Skip to main content
Log in

Complete genome analysis of a Staphylococcus aureus phage (vBSM-A1)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, the genome of a new strain of lytic Staphylococcus aureus Herelleviridae, vBSM-A1, was characterized and annotated. The phage was isolated from sewage samples collected in Xinjiang Province, China. The genome of vBSM-A1 was found to comprise a linear double-stranded DNA of 140,654 bp length, with a G + C content of 30.33%. A total of 215 ORFs were detected in the phage DNA, 74 of which were functionally assigned. The 3D structure model of endolysin LysK (ORF 143) was created using Phyre2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basanisi MG, Bella GL, Nobili G et al (2017) Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol 62:141–146

    Article  CAS  Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Cecilia B, Juan Carlos LF, Stéphanie B et al (2013) X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol Microbiol 89(1):152–165

    Article  Google Scholar 

  • Dwivedi B, Xue B, Lundin D et al (2013) A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol 13(1):33

    Article  CAS  Google Scholar 

  • Geng H, Zou W, Zhang M et al (2019) Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol. https://doi.org/10.1007/s12223-019-00729-9

    Article  Google Scholar 

  • Haran KP, Godden SM, Boxrud D et al (2012) Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J Clin Microbiol 50(3):688

    Article  CAS  Google Scholar 

  • Iwano H, Inoue Y, Takasago T et al (2018) Bacteriophage ΦSA012 has a broad host range against Staphylococcusaureus and effective lytic capacity in a mouse mastitis model. Biology 7(1):8

    Article  Google Scholar 

  • Jamali H, Barkema HW, Jacques M et al (2018) Invited review: incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. J Dairy Sci 101(6):4729–4746

    Article  CAS  Google Scholar 

  • Kane TL, Carothers KE, Lee SW (2018) Virulence factor targeting of the bacterial pathogen Staphylococcus aureus for vaccine and therapeutics. Curr Drug Targets 19:111–127

    Article  CAS  Google Scholar 

  • Liu H, Li S, Meng L et al (2017) Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J Dairy Sci 100(11):8796–8803

    Article  CAS  Google Scholar 

  • Nelson DC, Schmelcher M, Rodriguez-Rubio L (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365

    Article  CAS  Google Scholar 

  • Notebaert S, Meyer E (2006) Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet Q 28(1):2–13

    Article  CAS  Google Scholar 

  • Pell LG, Voula K, Donaldson LW et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106(11):4160–4165

    Article  CAS  Google Scholar 

  • Peter S, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(Web Server issue):686–689

    Google Scholar 

  • Roches ADBD, Lussert A, Faure M et al (2018) Dairy cows under experimentally-induced Escherichia coli mastitis show negative emotional states assessed through Qualitative Behaviour Assessment. Appl Anim Behav Sci. https://doi.org/10.1016/j.applanim.2018.06.004

    Article  Google Scholar 

  • Ronco T, Klaas IC, Stegger M et al (2018) Genomic investigation of Danish Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis. Vet Microbiol 215:35

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, pp 182–186

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23(4):445–451

    Article  CAS  Google Scholar 

  • Yuan Y, Zhao F, Wang L et al (2019) Complete genome analysis of the novel Enterococcus faecalis phage vB_EfaS_AL3. Arch Virol. https://doi.org/10.1007/s00705-019-04341-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuksel SA, Thompson KD, Ellis AE et al (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Organ 44(3):231–235

    Article  CAS  Google Scholar 

  • Zandkarimi F, Vanegas J, Fern X et al (2018) Metabotypes with elevated protein and lipid catabolism and inflammation precede clinical mastitis in prepartal transition dairy cows. J Dairy Sci 101(6):S1331041478

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant no. 2018YFD0500600). We would like to thank Dr. Alan K Chang for his valuable discussion and help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Xu.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2020_1867_MOESM1_ESM.png

Secondary structures of the tRNAs in the phage vBSM-A1. a tRNA-Asp (GTC); b tRNA-Phe (GAA); c tRNA-Pseudo (CCA); d tRNA-Met (CAT) (PNG 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Zhang, M., Li, X. et al. Complete genome analysis of a Staphylococcus aureus phage (vBSM-A1). Arch Microbiol 202, 1617–1626 (2020). https://doi.org/10.1007/s00203-020-01867-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01867-2

Keywords

Navigation