Skip to main content

Advertisement

Log in

Response of the respiratory mucosal cells to mycobacterium avium subsp. Hominissuis microaggregate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium avium: subsp. hominissuis (MAH) is an opportunistic pathogen that commonly infects immunocompromised individuals. Recently, we described an invasive phenotypic change MAH undergoes when incubated with lung airway epithelial host cells for 24 h, which is accompanied with microaggregate formation in vitro. The microaggregate phenotype also resulted in higher colonization in the lungs of mice early during infection. Previously, we identified genes highly regulated during microaggregate formation and further characterized the function of two highly upregulated bacterial proteins, mycobacterial binding protein-1 (MBP-1) and mycobacterial inversion protein-1 (MIP-1), which were found to be involved in binding and invasion of the respiratory mucosa. While these studies are valuable in understanding the pathogenesis of MAH, they primarily investigated the bacteria during microaggregate infection without commenting on the differences in the host response to microaggregate and planktonic infection. The bacteria–host interaction between microaggregates and epithelial cells was examined in a variety of assays. Using a transwell polarized epithelial cell model, microaggregates translocated through the monolayer more efficiently than planktonic bacteria at set timepoints. In addition, during infection with microaggregate and planktonic bacteria, host phosphorylated proteins were identified revealing differences in immune response, glutathione synthesis, and apoptosis. The host immune response was further investigated by measuring pro-inflammatory cytokine secretion during microaggregate and planktonic infection of BEAS-2B bronchial epithelial cells. The epithelial cells secreted more CCL5 during infection with microaggregates suggesting that this chemokine may play an important role during microaggregate invasion. Subsequent experiments showed that microaggregates are formed more efficiently in the presence of CCL5, suggesting that MAH had evolved a strategy to use the host response in its benefit. Collectively, this study establishes the different nature of infection by planktonic bacteria and microaggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkhuder K et al (2009) Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog 5(1):e1000284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babrak L et al (2015) The environment of “Mycobacterium avium subsp. hominissuis” microaggregates induces synthesis of small proteins associated with efficient infection of respiratory epithelial cells. Infect Immun 83(2):625–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai X et al (2011) IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease. Int Immunol 23(11):679–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bermudez LE, Young LS (1994) Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect Immun 62(5):2021–2026

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bermudez LE et al (2002) The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70(1):140–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bermudez LE, Petrofsky M, Sangari F (2004) Intracellular phenotype of Mycobacterium avium enters macrophages primarily by a macropinocytosis-like mechanism and survives in a compartment that differs from that with extracellular phenotype. Cell Biol Int 28(5):411–419

    Article  PubMed  CAS  Google Scholar 

  • Bras AM, Ketley JM (1999) Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers. FEMS Microbiol Lett 179(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • Burns JL et al (2001) Transcytosis of gastrointestinal epithelial cells by Escherichia coli K1. Pediatr Res 49(1):30–37

    Article  PubMed  CAS  Google Scholar 

  • Buza JJ et al (2003) Mycobacterium avium subsp. paratuberculosis infection causes suppression of RANTES, monocyte chemoattractant protein 1, and tumor necrosis factor alpha expression in peripheral blood of experimentally infected cattle. Infect Immun 71(12):7223–7227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159(7):1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Caudy AA et al (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425(6956):411–414

    Article  PubMed  CAS  Google Scholar 

  • Champsi J, Young LS, Bermudez LE (1995) Production of TNF-alpha, IL-6 and TGF-beta, and expression of receptors for TNF-alpha and IL-6, during murine Mycobacterium avium infection. Immunology 84(4):549–554

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan J et al (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59(5):1755–1761

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan J et al (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175(4):1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Cooper AM et al (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247

    Article  PubMed  CAS  Google Scholar 

  • Covert TC et al (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol 65(6):2492–2496

    PubMed  PubMed Central  CAS  Google Scholar 

  • Danelishvili L et al (2003) Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 5(9):649–660

    Article  PubMed  CAS  Google Scholar 

  • Devergne O et al (1994) Production of the RANTES chemokine in delayed-type hypersensitivity reactions: involvement of macrophages and endothelial cells. J Exp Med 179(5):1689–1694

    Article  PubMed  CAS  Google Scholar 

  • Duell BL et al (2013) Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli. PLOS ONE 8(10):e78013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlers S (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 37(2):87–95

    Article  PubMed  CAS  Google Scholar 

  • Esther CR Jr et al (2010) Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cystic Fibrosis Off J Eur Cystic Fibrosis Soc 9(2):117–123

    Article  Google Scholar 

  • Falkinham JO (2003) The changing pattern of nontuberculous mycobacterial disease. Can J Infect Dis 14(5):281–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkinham JO 3rd, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67(3):1225–1231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feazel LM et al (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA 106(38):16393–16399

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlay BB, Falkow S (1990) Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis 162(5):1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL et al (1995) IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J Immunol 155(5):2515–2524

    PubMed  CAS  Google Scholar 

  • Heldwein KA, Fenton MJ (2002) The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 4(9):937–544

    Article  PubMed  CAS  Google Scholar 

  • Hsu N, Young LS, Bermudez LE (1995) Response to stimulation with recombinant cytokines and synthesis of cytokines by murine intestinal macrophages infected with the Mycobacterium avium complex. Inect Immun 63(2):528–533

    CAS  Google Scholar 

  • Hussain S, Zwilling BS, Lafuse WP (1999) Mycobacterium avium infection of mouse macrophages inhibits IFN-gamma Janus kinase-STAT signaling and gene induction by down-regulation of the IFN-gamma receptor. J Immunol 163(4):2041–2048

    PubMed  CAS  Google Scholar 

  • Huttunen K et al (2001) Comparison of mycobacteria-induced cytotoxicity and inflammatory responses in human and mouse cell lines. Inhal Toxicol 13(11):977–991

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Kabara E, Coussens PM (2012) Infection of Primary Bovine Macrophages with Mycobacterium avium Subspecies paratuberculosis Suppresses Host Cell Apoptosis. Front Microbiol 3:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kierbel A et al (2007) Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol 177(1):21–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krutzik SR, Modlin RL (2004) The role of Toll-like receptors in combating mycobacteria. Semin Immunol 16(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Lecuyer H, Nassif X, Coureuil M (2012) Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun 80(1):175–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy I et al (2008) Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 14(3):378–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumb R et al (2004) Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl Environ Microbiol 70(8):4906–4910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirsaeidi M et al (2014) Highlight on Advances in Nontuberculous Mycobacterial Disease in North America. Biomed Res Int 2014:919474

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris D et al (2013) Glutathione and infection. Biochim Biophys Acta 1830(5):3329–3349

    Article  PubMed  CAS  Google Scholar 

  • Mucha R et al (2009) Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet Immunol Immunopathol 128(4):381–388

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee T et al (2004) Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv 11(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Rao SP, Ogata K, Catanzaro A (1993) Mycobacterium avium-M. intracellulare binds to the integrin receptor alpha v beta 3 on human monocytes and monocyte-derived macrophages. Infect Immun 61(2):663–670

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SP, Hayashi T, Catanzaro A (2000) Release of monocyte chemoattractant protein (MCP)-1 by a human alveolar epithelial cell line in response to mycobacterium avium. FEMS Immunol Med Microbiol 29(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Reniere ML et al (2015) Glutathione activates virulence gene expression of an intracellular pathogen. Nature 517(7533):170–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102(2):347–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roach SK, Schorey JS (2002) Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect Immun 70(6):3040–3052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose SJ et al (2014) Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One 9(9):e108703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sangari FJ, Petrofsky M, Bermudez LE (1999) Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. Infect Immun 67(10):5069–5075

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sangari FJ, Goodman J, Bermudez LE (2000) Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype. Cell Microbiol 2(6):561–568

    Article  PubMed  CAS  Google Scholar 

  • Seo GJ et al (2013) Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14(4):435–445

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL et al (2008) Toll-like receptor genes are differentially expressed at the sites of infection during the progression of Johne’s disease in outbred sheep. Vet Immunol Immunopathol 124(1–2):132–151

    Article  PubMed  CAS  Google Scholar 

  • Tse HM et al (2002) Activation of the mitogen-activated protein kinase signaling pathway is instrumental in determining the ability of Mycobacterium avium to grow in murine macrophages. J Immunol 168(2):825–833

    Article  PubMed  CAS  Google Scholar 

  • Velmurugan K et al (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7):e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesosky B et al (2010) CCL5 participates in early protection against Mycobacterium tuberculosis. J Leukoc Biol 87(6):1153–1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki Y et al (2006) The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8(5):806–814

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant AI 043199 from the National Institutes of Health and from the Microbiology Foundation, of San Francisco, CA. We are in debt to Sasha Rose, for his help with bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz E. Bermudez.

Additional information

Communicated by Michael Berney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babrak, L., Bermudez, L.E. Response of the respiratory mucosal cells to mycobacterium avium subsp. Hominissuis microaggregate. Arch Microbiol 200, 729–742 (2018). https://doi.org/10.1007/s00203-018-1479-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1479-1

Keywords

Navigation