Skip to main content

Advertisement

Log in

The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

P1B-type ATPases are involved in heavy metal transport across the plasma membrane. Some Mycobacterium tuberculosis P-type ATPases are induced during infection, suggesting that this type of transporter could play a critical role in mycobacterial survival. To date, the ion specificity of M. tuberculosis heavy metal-transporting P1B-ATPases is not well understood. In this work, we observed that, although divalent heavy metal cations such as Cu2+, Co2+, Ni2+, Zn2+ Cd2+ and Pb2+ stimulate the ATPase activity of the putative P1B-type ATPase CtpG in the plasma membrane, whole cells of M. smegmatis expressing CtpG only tolerate high levels of Cd2+ and Cu2+. As indicator of the catalytic constant, Michaelis–Menten kinetics showed that CtpG embedded in the mycobacterial cell membrane has a V max/K m ratio 7.4-fold higher for Cd2+ than for Cu2+ ions. Thus, although CtpG can accept different substrates in vitro, this P-type ATPase transports Cd2+ more efficiently than other heavy metal cations across the mycobacterial plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agranoff D, Krishna S (1998) Metal ion homeostasis and intracellular parasitism. Mol Microbiol 28:403–412

    Article  CAS  PubMed  Google Scholar 

  • Andreu N, Soto CY, Roca I, Martín C, Gibert I (2004) Mycobacterium smegmatis displays the Mycobacterium tuberculosis virulence-related neutral red character when expressing the Rv0577 gene. FEMS Microbiol Lett 231(2):283–289

    Article  CAS  PubMed  Google Scholar 

  • Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195: 93–108

    Article  PubMed  Google Scholar 

  • Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  Google Scholar 

  • Ayala-Torres C, Novoa-Aponte L, Soto CY (2015) Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane. Microbiol Res 176:1–6

    Article  CAS  PubMed  Google Scholar 

  • Basu J, Chattopadhyay R, Kundu M, Chakrabarti P (1992) Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J Bacteriol 174:4829–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  CAS  PubMed  Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, Wang C, Tailleux L, Tilleul S, Charrière GM, Waddell SJ, Foti M, Lugo-Villarino G, Gao Q, Maridonneau-Parini I, Butcher PD, Castagnoli PR, Gicquel B, de Chastellier C, Neyrolles O (2011) Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages. Cell Host Microbe 10:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariani L, Thomas L, Brito J, del Castillo JR (2004) Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal Biochem 324:79–83

    Article  CAS  PubMed  Google Scholar 

  • Chauhan S, Kumar A, Singhal A, Tyagi JS, Prasad HK (2009) CmtR, a cadmium-sensing ArsR-SmtB repressor, cooperatively interacts with multiple operator sites to autorepress its transcription in Mycobacterium tuberculosis. FEBS J 276:3428–3439

    Article  CAS  PubMed  Google Scholar 

  • Cserzo M, Wallin E, Simon I, Von Heijne G, Elofsson A (1997) Predictions of transmembrane alpha/helices in procariotic membrane proteins: the Dense Aligment Surface method. Prot Eng 10:673–676

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Futai M, Wada Y, Kaplan J (2004) Handbook of ATPases biochemistry, cell biology, pathopysiology, 1st edn. Wiley-VCH, Germany

    Book  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Grasseschi RM, Ramaswamy RB, Levine DJ, Klaassen CD, Wesselius LJ (2003) Cadmium accumulation and detoxification by alveolar macrophages of cigarette smokers. Chest 124:1924–1928

    Article  CAS  PubMed  Google Scholar 

  • Hampshire T, Soneji S, Butcher P (2004) Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: A model for persistent organisms? Tuberculosis 84:228–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Hu N, Zhao B (2007) Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol Lett 267:17–22

    Article  CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur M, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • León-Torres A, Novoa-Aponte L, Soto CY (2015) CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. Biometals 28:713–724

    Article  PubMed  Google Scholar 

  • Lew JM, Kapopoulou A, Jones LM, Cole ST (2011) TubercuList–10 years after. Tuberculosis (Edinb) 91:1–7

    Article  Google Scholar 

  • Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci USA 106:4677–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45(3):763–772

    Article  CAS  PubMed  Google Scholar 

  • Lomize MA, Pogosheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376

    Article  CAS  PubMed  Google Scholar 

  • Mana-Capelli S, Mandal AK, Argüello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541

    Article  CAS  PubMed  Google Scholar 

  • Novoa-Aponte L, León-Torres A, Patiño-Ruiz M, Cuesta-Bernal J, Salazar LM, Landsman D, Mariño-Ramírez L, Soto CY (2012) In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct Biol 12:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raimunda D, Long JE, Sassetti CM (2012) Role in metal homeostasis of CtpD, a Co2+ transporting P1B4-ATPase of Mycobacterium smegmatis. Mol Microbiol 84:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Arguello JM (2014) Differential roles for the Co2+/Ni2 + transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol Microbiol 91:185–197

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland J, Niederweis M (2012) Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis 92:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621

    Article  CAS  PubMed  Google Scholar 

  • Snapper SB, Melton RE, Mustafa S (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919

    Article  CAS  PubMed  Google Scholar 

  • Somerville W, Thibert L, Schwartzman K, Berh MA (2005) Extraction of Mycobacterium tuberculosis DNA: a Question of Containment. J Clin Microbiol 43:2996–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs JR, Bloom WR BR (1991) New use of BCG for recombinant vaccines. Nature 351:456–460

    Article  CAS  PubMed  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  • Tusnády GE, Dosztányi Z, Simon I (2005) TMDET: Web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21:1276–1277

    Article  PubMed  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Maser J, Moric I, Boechat N, Vogt S, Gicquel B, Lai B, Reyrat JM, Bermudez L (2005) Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151(Pt 1):323–332

    Article  CAS  PubMed  Google Scholar 

  • Ward SK, Hoye EA, Talaat AM (2008) The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol 190:2939–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM (2010) CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77:1096–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. http://whqlibdoc.who.int/publications/2010/9789241599191_eng.pdf. Accessed 1 May 2017

  • World Health Organization (WHO) (2015) Global Tuberculosis Report 2015. 20th edn, World Health Organization

  • Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, Lund O, Larsen MV, Aarestrup FM (2013) Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 68:771–777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the División de Investigación Bogotá (DIB)-Universidad Nacional de Colombia (Grant 27754) and Colciencias (Grant 110171250419). ML and LQ were fellows of the “Jóvenes Investigadores e Innovadores” Program, Colciencias, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Y. Soto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2017_1465_MOESM1_ESM.docx

Supplementary Fig. 1 M. tuberculosis ctpG cloning in the pMV261 mycobacterial/E. coli shuttle vector. a Schematic representation of the pML01 recombinant expression vector. b The ctpG gene was amplified from M. tuberculosis H37Rv genomic DNA using the ctpG pMV-Dir/ ctpG pMV-Rev primers. Lanes: (1) Molecular weight marker (GeneRuler 1kb DNA Ladder, Thermo Scientific, USA) and (2) ctpG amplimer (2383 pb). c Integrity and directionality of ctpG in pML01 was verified by restriction patterns. Lanes: (1) Molecular weight marker (GeneRuler 1kb DNA Ladder, Thermo Scientific, USA) (2) pML01 recombinant vector, and restriction enzyme patterns obtained with the (3) NheI, (4) BglII, (5), XhoI, (6) EcoRI and (7) EcoRI/SalI restriction enzymes (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M., Quitian, LV., Calderón, MN. et al. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch Microbiol 200, 483–492 (2018). https://doi.org/10.1007/s00203-017-1465-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1465-z

Keywords

Navigation