Skip to main content

Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives

  • Protocol
  • First Online:
Microbial Transposon Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2016))

Abstract

Mutagenizing bacterial genomes with selectable transposon insertions is an effective approach for identifying the genes underlying important phenotypes. Specific bacteria may require different tools and methods for effective transposon mutagenesis, and here we describe methods to mutagenize Vibrio fischeri using an engineered mini-Tn5 transposon with synthetic “mosaic” transposon ends. The transposon is delivered by conjugation on a plasmid that cannot replicate in V. fischeri and that encodes a hyperactive transposase outside the transposon itself. The chromosomal location of insertions can be readily identified by cloning and/or PCR-based methods described here. Although developed in V. fischeri, these tools and methods have proven effective in some other bacteria as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McFall-Ngai MJ (2014) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194. https://doi.org/10.1146/annurev-micro-091313-103654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruby EG, McFall-Ngai MJ (1992) A squid that glows in the night: development of an animal-bacterial mutualism. J Bacteriol 174:4865–4870

    Article  CAS  Google Scholar 

  3. Stabb EV (2005) Shedding light on the bioluminescence “paradox”. ASM News 71:223–229

    Google Scholar 

  4. Stabb EV (2006) The Vibrio fischeri-Euprymna scolopes light organ symbiosis. In: Thompson FL, Austin B, Swings J (eds) The biology of vibrios. ASM Press, Washington D.C., pp 204–218

    Chapter  Google Scholar 

  5. Stabb EV, Schaefer A, Bose JL, Ruby EG (2008) Quorum signaling and symbiosis in the marine luminous bacterium Vibrio fischeri. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington D.C., pp 233–250

    Chapter  Google Scholar 

  6. Stabb EV, Visick KL (2013) Vibrio fischeri: a bioluminescent light-organ symbiont of the bobtail squid Euprymna scolopes. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F (eds) The prokaryotes, 4th edn. Springer-Verlag, Berlin Heidelberg, pp 497–532

    Chapter  Google Scholar 

  7. Visick KL, Ruby EG (2006) Vibrio fischeri and its host: it takes two to tango. Curr Opin Microbiol 9(6):632–638. https://doi.org/10.1016/j.mib.2006.10.001. S1369-5274(06)00153-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Graf J, Dunlap PV, Ruby EG (1994) Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol 176:6986–6991

    Article  CAS  Google Scholar 

  9. Graf J, Ruby EG (2000) Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol Microbiol 37:168–179

    Article  CAS  Google Scholar 

  10. Stabb EV, Ruby EG (2002) RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol 358:413–426

    Article  CAS  Google Scholar 

  11. Lyell NL, Dunn AK, Bose JL, Vescovi SL, Stabb EV (2008) Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl Environ Microbiol 74(22):7059–7063. https://doi.org/10.1128/AEM.01330-08. AEM.01330-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reznikoff WS, Goryshin IY, Jendrisak JJ (2004) Tn5 as a molecular genetics tool. In: Miller WJ, Capy P (eds) Mobile genetic elements: protocols and genomic applications, vol 260. Human Press Inc., Totowa, NJ

    Chapter  Google Scholar 

  13. Zhou M, Bhasin A, Reznikoff WS (1998) Molecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase. J Mol Biol 276(5):913–925

    Article  CAS  Google Scholar 

  14. Zhou M, Reznikoff WS (1997) Tn5 transposase mutants that alter DNA binding specificity. J Mol Biol 271(3):362–373

    Article  CAS  Google Scholar 

  15. Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS (1998) Tn5/IS50 target recognition. Proc Natl Acad Sci U S A 95(18):10716–10721

    Article  CAS  Google Scholar 

  16. Shevchenko Y, Bouffard GG, Butterfield YS, Blakesley RW, Hartley JL, Young AC, Marra MA, Jones SJ, Touchman JW, Green ED (2002) Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res 30(11):2469–2477

    Article  CAS  Google Scholar 

  17. Adin DM, Visick KL, Stabb EV (2008) Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl Environ Microbiol 74(13):4059–4069. https://doi.org/10.1128/AEM.00190-08. AEM.00190-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Visick KG, Ruby EG (1996) Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri. Gene 175:89–94

    Article  CAS  Google Scholar 

  19. Kolter R, Inuzuka M, Helinski DR (1978) Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell 15:1199–1208

    Article  CAS  Google Scholar 

  20. Wiegand TW, Reznikoff WS (1992) Characterization of two hypertransposing Tn5 mutants. J Bacteriol 174(4):1229–1239

    Article  CAS  Google Scholar 

  21. Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncPa plasmids: compilation and comparative analysis. J Mol Biol 239:623–663

    Article  CAS  Google Scholar 

  22. Bessette PH, Rice JJ, Daugherty PS (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein Eng Des Sel 17(10):731–739. https://doi.org/10.1093/protein/gzh084

    Article  CAS  PubMed  Google Scholar 

  23. Bose JL, Rosenberg CS, Stabb EV (2008) Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch Microbiol 190:169–183

    Article  CAS  Google Scholar 

  24. Ondrey JM, Visick KL (2014) Engineering Vibrio fischeri for inducible gene expression. Open Microbiol J 8:122–129. https://doi.org/10.2174/1874285801408010122

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brennan CA, Mandel MJ, Gyllborg MC, Thomasgard KA, Ruby EG (2013) Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri. Microbiology 2(4):576–594. https://doi.org/10.1002/mbo3.96

    Article  CAS  Google Scholar 

  26. Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98(22):12712–12717. https://doi.org/10.1073/pnas.231275498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bassis CM, Visick KL (2010) The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol 192(5):1269–1278. https://doi.org/10.1128/JB.01048-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lyell NL, Dunn AK, Bose JL, Stabb EV (2010) Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J Bacteriol 192(19):5103–5114. https://doi.org/10.1128/JB.00524-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lyell NL, Septer AN, Dunn AK, Duckett D, Stoudenmire JL, Stabb EV (2017) An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl Environ Microbiol 83(5). https://doi.org/10.1128/AEM.02470-16

  30. Lyell NL, Stabb EV (2013) Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl Environ Microbiol 79(7):2480–2483. https://doi.org/10.1128/AEM.03111-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyashiro T, Klein W, Oehlert D, Cao X, Schwartzman J, Ruby EG (2011) The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol Microbiol 82(4):894–903. https://doi.org/10.1111/j.1365-2958.2011.07858.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyashiro T, Oehlert D, Ray VA, Visick KL, Ruby EG (2014) The putative oligosaccharide translocase SypK connects biofilm formation with quorum signaling in Vibrio fischeri. Microbiology 3(6):836–848. https://doi.org/10.1002/mbo3.199

    Article  CAS  Google Scholar 

  33. Post DM, Yu L, Krasity BC, Choudhury B, Mandel MJ, Brennan CA, Ruby EG, McFall-Ngai MJ, Gibson BW, Apicella MA (2012) O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization. J Biol Chem 287(11):8515–8530. https://doi.org/10.1074/jbc.M111.324012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ray VA, Visick KL (2012) LuxU connects quorum sensing to biofilm formation in Vibrio fischeri. Mol Microbiol 86:954–970. https://doi.org/10.1111/mmi.12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Studer SV, Mandel MJ, Ruby EG (2008) AinS quorum sensing regulates the Vibrio fischeri acetate switch. J Bacteriol 190:5915–5923. https://doi.org/10.1128/JB.00148-08. JB.00148-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visick KL, Quirke KP, McEwen SM (2013) Arabinose induces pellicle formation by Vibrio fischeri. Appl Environ Microbiol 79(6):2069–2080. https://doi.org/10.1128/AEM.03526-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimbrough JH, Stabb EV (2015) Antisocial luxO mutants provide a stationary-phase survival advantage in Vibrio fischeri ES114. J Bacteriol 198(4):673–687. https://doi.org/10.1128/JB.00807-15

    Article  CAS  PubMed  Google Scholar 

  38. Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol 72:802–810

    Article  CAS  Google Scholar 

  39. Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 172:3701–3706

    Article  CAS  Google Scholar 

  40. Nuidate T, Tansila N, Saengkerdsub S, Kongreung J, Bakkiyaraj D, Vuddhakul V (2016) Role of indole production on virulence of Vibrio cholerae using Galleria mellonella larvae model. Indian J Microbiol 56(3):368–374. https://doi.org/10.1007/s12088-016-0592-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Getz LJ, Thomas NA (2018) The transcriptional regulator HlyU positively regulates exsA expression leading to type III secretion system-1 activation in Vibrio parahaemolyticus. J Bacteriol 200(15):pii:e00653–pii:e00617. https://doi.org/10.1128/JB.00653-17

    Article  Google Scholar 

  42. Dunn AK, Rader BA, Stabb EV, Mandel MJ (2015) Regulation of bioluminescence in Photobacterium leiognathi strain KNH6. J Bacteriol 197(23):3676–3685. https://doi.org/10.1128/JB.00524-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herrero M, De Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    Article  CAS  Google Scholar 

  44. Dunn AK, Martin MO, Stabb EV (2005) Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54:114–134

    Article  CAS  Google Scholar 

  45. Haldimann A, Prahalad MK, Fisher SL, Kim S-K, Walsh CT, Wanner BL (1996) Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Proc Natl Acad Sci U S A 93:14361–14366

    Article  CAS  Google Scholar 

  46. Metcalf WW, Jiang W, Wanner BL (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Alecia Septer, Mark Mandel, Tim Miyashiro, and Karen Visick for helpful discussions, and Helen Dukes for technical assistance. This work was supported by NSF grants CAREER-MCB-0347317, IOS-0841480, IOS-1557964, IOS-0843317, and MCB-1716232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric V. Stabb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stoudenmire, J.L., Black, M., Fidopiastis, P.M., Stabb, E.V. (2019). Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives. In: Ricke, S., Park, S., Davis, M. (eds) Microbial Transposon Mutagenesis. Methods in Molecular Biology, vol 2016. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9570-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9570-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9569-1

  • Online ISBN: 978-1-4939-9570-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics