Skip to main content
Log in

Metagenomic analysis reveals the influences of milk containing antibiotics on the rumen microbes of calves

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Milk containing antibiotics is used as cost-effective feed for calves, which may lead to antibiotic residues-associated food safety problems. This study aims to investigate the influence of antibiotics on rumen microbes. Through metagenomic sequencing, the rumen microbial communities of calves fed with pasteurized milk containing antibiotics (B1), milk containing antibiotics (B2) and fresh milk (B3) were explored. Each milk group included calves in 2 (T1), 3 (T2) and 6 (T3) months of age. Using FastQC software and SOAPdenovo 2, the filtered data, respectively, were performed with quality control and sequence splicing. Following KEGG annotation was conducted for the uploaded sequences using KAAS software. Using R software, both species abundance analysis and differential abundance analysis were performed. In the B1 samples, the species abundance of Bacteroidetes gradually decreased along with the extension of feeding time, while that of Fibrobacteres gradually increased. The species abundances of Proteobacteria (p value = 0.01) and Spirochaetes (p value = 0.03) had significant differences among T1, T2 and T3 samples. Meanwhile, only the species abundance of Spirochaetes (p value = 0.04) had significant difference among B1, B2 and B3 samples. Cell cycle involving GSK3β, CDK2 and CDK7 was significantly enriched for the differentially expressed genes in the T1 versus T2 and T1 versus T3 comparison groups. Milk containing antibiotics might have a great influence on these rumen microbes and lead to antibiotic residues-associated food safety problems. Furthermore, GSK3β, CDK2 and CDK7 in rumen bacteria might affect milk fat metabolism in early growth stages of calves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    Article  CAS  PubMed  Google Scholar 

  • Andrew S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

  • Barlow J (2011) Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia 16:383–407

    Article  PubMed  Google Scholar 

  • Brulc JM et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106:1948–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell D, Lele S (2013) An ANOVA test for parameter estimability using data cloning with application to statistical inference for dynamic systems. Comput Stat Data Anal 70:257–267

    Article  Google Scholar 

  • Conagin A, Barbin D, Demétrio CGB (2008) Modifications for the Tukey test procedure and evaluation of the power and efficiency of multiple comparison procedures. Sci Agric 65:428–432

    Article  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Gómez B et al (2013) Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7:1026–1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RP (2005) Secrets of a double agent: cDK7 in cell-cycle control and transcription. J Cell Sci 118:5171–5180

    Article  CAS  PubMed  Google Scholar 

  • Goshen T, Shpigel NY (2006) Evaluation of intrauterine antibiotic treatment of clinical metritis and retained fetal membranes in dairy cows. Theriogenology 66:2210–2218

    Article  CAS  PubMed  Google Scholar 

  • Hampson DJ, Ahmed N (2009) Spirochaetes as intestinal pathogens: lessons from a Brachyspira genome. Gut pathogens 1:1

    Article  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONe 7:e33306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewell KA, Scott JJ, Adams SM, Suen G (2013) A phylogenetic analysis of the phylum Fibrobacteres. Syst Appl Microbiol 36:376–382

    Article  CAS  PubMed  Google Scholar 

  • Jun H, Qi M, Ha J, Forsberg C (2007) Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian Australas J Anim Sci 20:802

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  PubMed  Google Scholar 

  • Katsuda K, Kohmoto M, Mikami O, Uchida I (2009) Antimicrobial resistance and genetic characterization of fluoroquinolone-resistant Mannheimia haemolytica isolates from cattle with bovine pneumonia. Vet Microbiol 139:74–79

    Article  CAS  PubMed  Google Scholar 

  • Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the proteobacteria. In: Dworkin M, Falkow S, Rosenberg E (eds) The prokaryotes. Springer, Berlin, pp 3–37

    Chapter  Google Scholar 

  • Kobayashi Y, Shinkai T, Koike S (2008) Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion: review. Folia Microbiol 53:195–200

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RW, Connor EE, Li C, Baldwin V, Ransom L, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14:129–139

    Article  PubMed  Google Scholar 

  • Lu J, Zhao H, Xu J, Zhang L, Yan L, Shen Z (2012) Elevated cyclin D1 expression is governed by plasma IGF-1 through Ras/Raf/MEK/ERK pathway in rumen epithelium of goats supplying a high metabolizable energy diet. J Anim Physiol A Anim Nutr 97:1170–1178

    Article  Google Scholar 

  • Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:1–6

    Article  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mevik Br (2007) The PLS package: principal component and partial least squares regression in R. J Stat Softw 18:1–24

    Article  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver SP, Murinda SE, Jayarao BM (2011) Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathog Dis 8:337–355

    Article  CAS  PubMed  Google Scholar 

  • Pandya P et al (2010) Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. J Appl Genet 51:395–402

    Article  CAS  PubMed  Google Scholar 

  • Parvin H, Minaei-Bidgoli B, Alizadeh H (2011) A new clustering algorithm with the convergence proof. In: Jordanov I, Jain RJHL (eds) Knowledge-based and intelligent information and engineering systems. Springer, Berlin, pp 21–31

    Chapter  Google Scholar 

  • Paster BJ (2010) Phylum XV: spirochaetes garrity and holt 2001. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds) Bergey’s manual® of systematic bacteriology. Springer, Berlin, pp 471–566

    Google Scholar 

  • Petri R et al (2013) Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 79:3744–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    Article  CAS  PubMed  Google Scholar 

  • Ransom-Jones E, Jones DL, Edwards A, McDonald JE (2014) Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 37:502–509

    Article  CAS  PubMed  Google Scholar 

  • Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    Article  PubMed  Google Scholar 

  • Rosbergcody E, Johnson MC, Fitzgerald GF, Ross PR, Stanton C (2007) Heterologous expression of linoleic acid isomerase from Propionibacterium acnes and anti-proliferative activity of recombinant trans-10, cis-12 conjugated linoleic acid. Microbiology 153:2483–2490

    Article  CAS  Google Scholar 

  • Rosenberg E (2014) The phylum Fibrobacteres. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 641–642

    Google Scholar 

  • Shi H, Zhang T, Yi Y, Wang H, Luo J (2016) Long form PRLR (lPRLR) regulates genes involved in the triacylglycerol synthesis in goat mammary gland epithelial cells. Small Rumin Res 139:7–14

    Article  Google Scholar 

  • Shinkai T, Ueki T, Kobayashi Y (2010) Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes. Anim Sci J 81:72–79

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Jakhesara S, Koringa P, Rank D, Joshi C (2012) Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507:146–151

    Article  CAS  PubMed  Google Scholar 

  • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    Article  CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Sundset MA et al (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348

    Article  CAS  PubMed  Google Scholar 

  • Testero SA, Fisher JF, Mobashery S (2010) β-Lactam antibiotics. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry, drug discovery and development. Wiley, Hoboken, pp 259–404

    Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Welkie DG, Stevenson DM, Weimer PJ (2010) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16:94–100

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL et al (2007) Database resources of the national center for biotechnology information. Nucleic Acids Res 35:D5–D12

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB et al (2012) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York

    Google Scholar 

  • Wilke MS, Lovering AL, Strynadka NC (2005) β-Lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 8:525–533

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2014) GSK3β regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules 19:9435–9452

    Article  PubMed  Google Scholar 

  • Zhou N, Wang L (2007) A modified T-test feature selection method and its application on the HapMap genotype data. Genomics Proteomics Bioinform 5:242–249

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Number 31340031); Synergetic Innovation Center of Food Safety and Nutrition, National Key Technologies R&D Program (Grant Numbers 2012BAD12B05-1 and 2012BAD12B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Han, Y., Yuan, X. et al. Metagenomic analysis reveals the influences of milk containing antibiotics on the rumen microbes of calves. Arch Microbiol 199, 433–443 (2017). https://doi.org/10.1007/s00203-016-1311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1311-8

Keywords

Navigation