Skip to main content
Log in

Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Saccharomyces cerevisiae, a typical apoptotic phenotype is induced by some stress factors such as sugars, acetic acid, hydrogen peroxide, aspirin and age. Nevertheless, no data have been reported for apoptosis induced by puromycin, a damaging agent known to induce apoptosis in mammalian cells. We treated S. cerevisiae with puromycin to induce apoptosis and evaluated the percentage of dead cells by using Hoechst 33342 staining, transmission electron microscopy (TEM) and Annexin V flow cytometry (FC) analysis. Hoechst 33342 fluorescence images were processed to acquire parameters to use for multiparameter analysis [and perform a principal component analysis, (PCA)]. Cell viability was evaluated by Rhodamine 123 (Rh 123) and Acridine Orange microscope fluorescence staining. The results show puromycin-induced apoptosis in S. cerevisiae, and the PCA analysis indicated that the increasing percentage of apoptotic cells delineated a well-defined graph profile. The results were supported by TEM and FC. This study gives new insights into yeast apoptosis using puromycin as inducer agent, and PCA analysis may complement molecular analysis facilitating further studies to its detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achilles J, Harms H, Muller S (2006) Analysis of living S. cerevisiae cell states—a three color approach. Cytom A 69:173–177

    Article  CAS  Google Scholar 

  • Albertini MC, Accorsi A, Teodori L, Pierfelici L, Uguccioni F, Rocchi MBL, Burattini S, Citterio B (2006) Use of multiparameter analysis for Vibrio alginolyticus viable but nonculturable state determination. Cytom A 69:260–265

    Article  Google Scholar 

  • Allen C, Büttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393

    Article  CAS  PubMed  Google Scholar 

  • Balzan R, Sapienza K, Galea DR, Vassallo N, Frey H, Bannister VH (2004) Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology 150:109–115

    Article  CAS  PubMed  Google Scholar 

  • Battistelli M, Borzì RM, Olivotto E, Vitellozzi R, Burattini S, Facchini A, Falcieri E (2005) Cell and matrix morpho-functional analysis in chondrocyte micromasses. Microsc Res Tech 67:286–295

    Article  PubMed  Google Scholar 

  • Berlanda J, Kiesslich T, Oberdanner CB, Obermair FJ, Krammer B, Plaetzer K (2006) Characterization of apoptosis induced by photodynamic treatment with hypericin in a431 human epidermoid carcinoma cells. J Environ Pathol Toxicol Oncol 25:173–188

    Article  CAS  PubMed  Google Scholar 

  • Canonico B, Zamai L, Burattini S, Granger V, Mannello F, Gobbi P, Felici C, Falcieri E, Reilly JT, Barnett D, Papa S (2004) Evaluation of leukocyte stabilisation in TransFix®-treated blood samples by flow cytometry and transmission electron microscopy. J Immunol Methods 295:67–78

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D, Kroemer G, Madeo F (2012) When death was young: an ancestral apoptotic network in bacteria. Mol Cell 46:552–554

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773

    Article  CAS  PubMed  Google Scholar 

  • Cary GA, Yoon SH, Torres CG, Wang K, Hays M, Ludlow C, Goodlett DR, Dudley AM (2014) Identification and characterization of a drug-sensitive strain enables puromycin-based translational assays in Saccharomyces cerevisiae. Yeast 31(5):167–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colussi C, Albertini MC, Coppola S, Rovidati S, Galli F, Ghibelli L (2000) H2O2-induced block of glycolysis as an active ADP ribosylation reaction protecting cells from apoptosis. FASEB J 14(14):2266–2276

    Article  CAS  PubMed  Google Scholar 

  • Del Carratore R, Della Croce C, Simili M, Taccini E, Scavezzo M, Sbrana S (2002) Cell Cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res 513:183–191

    Article  PubMed  Google Scholar 

  • Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121

    Article  PubMed  Google Scholar 

  • Engelberg-Kulka H, Sat B, Reches M, Amitai S, Hazan R (2004) Bacterial programmed cell death systems as targets for antibiotics. Trend Microbiol 12:66–71

    Article  CAS  Google Scholar 

  • Falcieri E, Gobbi P, Cataldi A, Zamai L, Faenza I, Vitale M (1994a) Nuclear pores in the apoptotic cell. Histochem J 26:754–763

    Article  CAS  PubMed  Google Scholar 

  • Falcieri E, Zamai L, Santi S, Cinti C, Gobbi P, Bosco D, Castaldi A, Betts C, Vitale M (1994b) The behaviour of nuclear domains in the corse of apoptosis. Histochemistry 102:221–231

    Article  CAS  PubMed  Google Scholar 

  • Ferreira P, Cardoso T, Ferreira F, Fernandes-Ferreira M, Piper P, Sousa MJ (2014) Mentha piperita essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Res. doi:10.1111/1567-1364.12189

    PubMed  Google Scholar 

  • Ghibelli L, Mengoni F, Lichtner M, Coppola S, De Nicola M, Bergamaschi A, Mastroianni C, Vullo V (2003) Anti-apoptotic effect of HIV protease inhibitors via direct inhibition of calpain. Biochem Pharmacol 66:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4:7–13

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  CAS  PubMed  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  • Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, Weinberger M, Burhans DT, Suter B, Madeo F, Burhans WC, Breitenbach M (2005) A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 5:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Li B, Gao MH, Zhang XC, Chu XM (2006) Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 43:155–164

    Article  CAS  PubMed  Google Scholar 

  • Luchetti F, Canonico B, Curci R, Battistelli M, Papa S, Mannello F, Tarzia G, Falcieri E (2006) Melatonin prevents apoptosis induced by UV-B treatment in U937 cell line. J Pin Res 40:158–167

    Article  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    CAS  PubMed  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytocrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxigen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frolich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama S, Nouraini S, Reed JC (1999) Yeast as a tool for apoptosis research. Curr Opin Microbiol 2:618–623

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Melcher U (1971) Metabolism of puromycin by yeast cells. Biochim Biophys Acta 246:216–224

    Article  CAS  PubMed  Google Scholar 

  • Nosseri C, Coppola S, Ghibelli L (1994) Possible involvement of poly-ADP-ribosyl transferase in triggering stress-induced apoptosis on U937 cells. Exp Cell Res 212:367–373

    Article  CAS  PubMed  Google Scholar 

  • Schindler D, Davies J (1974) Inhibitors of macromolecular synthesis in yeast. Methods Cell Biol 12:17–38

    Article  Google Scholar 

  • Sharon A, Finkelstein A, Shlezinger N, Hatam I (2009) Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33:833–854

    Article  CAS  PubMed  Google Scholar 

  • Sheffield LG, Miskiewicz HB, Tannenbaum LB, Mirra SS (2006) Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol 65:45–54

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (2001) The programmed death phenomena, aging, and the Samurai law of biology. Exp Gerontol 36:995–1024

    Article  CAS  PubMed  Google Scholar 

  • Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395

    Article  CAS  PubMed  Google Scholar 

  • Wloch-Salamon DM, Bem AE (2013) Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol 114:287–298

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Piatti.

Additional information

Communicated by Olaf Kniemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citterio, B., Albertini, M.C., Ghibelli, L. et al. Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae . Arch Microbiol 197, 773–780 (2015). https://doi.org/10.1007/s00203-015-1110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1110-7

Keywords

Navigation