Skip to main content
Log in

A new modified version of mountain gazelle optimization for parameter extraction of photovoltaic models

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This study addresses the challenges in accurately estimating photovoltaic (PV) parameters for solar energy applications by enhancing parameter extraction processes to improve the efficiency of PV models. An information gap in PV solar cell and module parameters provided by vendors obstructs accurate simulation. Traditional numerical techniques face limitations in accurately solving complex nonlinear optimization problems. As a solution, metaheuristic algorithms, specifically the mountain gazelle optimizer, are proposed. To overcome limitations of the mountain gazelle optimizer, a pattern search algorithm is integrated for a more robust global and local search. Rigorous testing demonstrates superior performance in achieving lower best values and tighter standard deviations compared to existing algorithms, making it a promising and efficient optimizer for accurate parameter estimation in various solar cell and module models, including the R.T.C. France silicon solar cell and Photowatt-PWP201 PV module. The proposed optimizer excels in estimating parameters for both single diode, double diode, and PV module models, outperforming state-of-the-art algorithms and showcasing its potential for reliable and precise optimization in solar cell modeling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. Allouhi A, Rehman S, Buker MS, Said Z (2022) Up-to-date literature review on Solar PV systems: technology progress, market status and R&D. J Clean Prod 362:132339. https://doi.org/10.1016/j.jclepro.2022.132339

    Article  Google Scholar 

  2. Seme S, Štumberger B, Hadžiselimović M, Sredenšek K (2020) Solar photovoltaic tracking systems for electricity generation: a review. Energies (Basel) 13:4224. https://doi.org/10.3390/en13164224

    Article  Google Scholar 

  3. Yufenyuy SW, Mengata GM, Nneme Nneme L, Bongwirnso UM (2024) Indoor environment PV applications: estimation of the maximum harvestable power. Renew Sustain Energy Rev 193:114287. https://doi.org/10.1016/j.rser.2024.114287

    Article  Google Scholar 

  4. Ekinci S, Izci D, Hussien AG (2024) Comparative analysis of the hybrid gazelle-Nelder–Mead algorithm for parameter extraction and optimization of solar photovoltaic systems. IET Renew Power Gener. https://doi.org/10.1049/rpg2.12974

    Article  Google Scholar 

  5. Chauhan A, Prakash S (2023) Optimal parameter estimation of solar photovoltaics through nature inspired metaheuristic and hybrid approaches. IETE J Res. https://doi.org/10.1080/03772063.2023.2171913

    Article  Google Scholar 

  6. Mohamed R, Abdel-Basset M, Sallam KM et al (2024) Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules. Sci Rep 14:3453. https://doi.org/10.1038/s41598-024-52416-6

    Article  Google Scholar 

  7. El-Dabah MA, El-Sehiemy RA, Hasanien HM, Saad B (2023) Photovoltaic model parameters identification using Northern goshawk optimization algorithm. Energy 262:125522. https://doi.org/10.1016/j.energy.2022.125522

    Article  Google Scholar 

  8. Fahim SR, Hasanien HM, Turky RA et al (2022) A Comprehensive review of photovoltaic modules models and algorithms used in parameter extraction. Energies (Basel) 15:8941. https://doi.org/10.3390/en15238941

    Article  Google Scholar 

  9. Ibrahim IA, Hossain MJ, Duck BC, Nadarajah M (2020) An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Convers Manag 213:112872. https://doi.org/10.1016/j.enconman.2020.112872

    Article  Google Scholar 

  10. Izci D, Ekinci S, Dal S, Sezgin N (2022) Parameter Estimation of Solar Cells via Weighted Mean of Vectors Algorithm. In: 2022 Global Energy Conference (GEC). IEEE, pp 312–316

  11. Abdel-Basset M, Mohamed R, Zidan M et al (2023) Mantis search algorithm: a novel bio-inspired algorithm for global optimization and engineering design problems. Comput Methods Appl Mech Eng 415:116200. https://doi.org/10.1016/j.cma.2023.116200

    Article  MathSciNet  Google Scholar 

  12. Izci D, Ekinci S, Güleydin M (2023) Improved reptile search algorithm for optimal design of solar photovoltaic module. Comput Sci IDAP. https://doi.org/10.53070/bbd.1346267

    Article  Google Scholar 

  13. Batzelis EI, Papathanassiou SA (2016) A method for the analytical extraction of the single-diode PV model parameters. IEEE Trans Sustain Energy 7:504–512. https://doi.org/10.1109/TSTE.2015.2503435

    Article  Google Scholar 

  14. Chaibi Y, Allouhi A, Salhi M (2020) A simple iterative method to determine the electrical parameters of photovoltaic cell. J Clean Prod 269:122363. https://doi.org/10.1016/j.jclepro.2020.122363

    Article  Google Scholar 

  15. Abbassi R, Abbassi A, Jemli M, Chebbi S (2018) Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew Sustain Energy Rev 90:453–474. https://doi.org/10.1016/j.rser.2018.03.011

    Article  Google Scholar 

  16. Ortizconde A, Garciasanchez F, MUCI J (2006) New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics. Sol Energy Mater Sol Cells 90:352–361. https://doi.org/10.1016/j.solmat.2005.04.023

    Article  Google Scholar 

  17. Easwarakhanthan T, Bottin J, Bouhouch I, BOUTRIT C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Solar Energy 4:1–12. https://doi.org/10.1080/01425918608909835

    Article  Google Scholar 

  18. Chen X, Xu B, Mei C et al (2018) Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl Energy 212:1578–1588. https://doi.org/10.1016/j.apenergy.2017.12.115

    Article  Google Scholar 

  19. Shen Y, Zhang C, Soleimanian Gharehchopogh F, Mirjalili S (2023) An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst Appl 215:119269. https://doi.org/10.1016/j.eswa.2022.119269

    Article  Google Scholar 

  20. Izci D, Abualigah L, Can Ö et al (2024) Achieving improved stability for automatic voltage regulation with fractional-order PID plus double-derivative controller and mountain gazelle optimizer. Int J Dyn Control. https://doi.org/10.1007/s40435-023-01381-5

    Article  Google Scholar 

  21. Ekinci S, İzci D (2024) Pattern search ameliorated arithmetic optimization algorithm for engineering optimization and infinite impulse response system identification. Electrica 24:119–130. https://doi.org/10.5152/electrica.2023.22234

    Article  Google Scholar 

  22. Rizk-Allah RM, Ekinci S, Izci D (2023) An improved artificial rabbits optimization for accurate and efficient infinite impulse response system identification. Decision Anal J 9:100355. https://doi.org/10.1016/j.dajour.2023.100355

    Article  Google Scholar 

  23. Eker E, Ekinci S, İzci D (2023) Optimal PID controller design for liquid level tank via modified artificial hummingbird algorithm. Comput Sci IDAP. https://doi.org/10.53070/bbd.1346269

    Article  Google Scholar 

  24. Mehta P, Sait SM, Yıldız BS et al (2024) A new enhanced mountain gazelle optimizer and artificial neural network for global optimization of mechanical design problems. Mater Test. https://doi.org/10.1515/mt-2023-0332

    Article  Google Scholar 

  25. Mehta P, Yildiz BS, Sait SM, Yildiz AR (2023) A novel hybrid Fick’s law algorithm-quasi oppositional–based learning algorithm for solving constrained mechanical design problems. Mater Test 65:1817–1825. https://doi.org/10.1515/mt-2023-0235

    Article  Google Scholar 

  26. Abualigah L, Ekinci S, Izci D, Zitar RA (2023) Modified elite opposition-based artificial hummingbird algorithm for designing fopid controlled cruise control system. Intell Autom Soft Comput 38:169–183. https://doi.org/10.32604/iasc.2023.040291

    Article  Google Scholar 

  27. Izci D, Ekinci S (2023) A novel-enhanced metaheuristic algorithm for FOPID-controlled and Bode’s ideal transfer function–based buck converter system. Trans Inst Meas Control 45:1854–1872. https://doi.org/10.1177/01423312221140671

    Article  Google Scholar 

  28. Izci D, Ekinci S, Mirjalili S (2023) Optimal PID plus second-order derivative controller design for AVR system using a modified Runge Kutta optimizer and Bode’s ideal reference model. Int J Dyn Control 11:1247–1264. https://doi.org/10.1007/s40435-022-01046-9

    Article  Google Scholar 

  29. Snášel V, Rizk-Allah RM, Izci D, Ekinci S (2023) Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer. Appl Soft Comput 136:110085. https://doi.org/10.1016/j.asoc.2023.110085

    Article  Google Scholar 

  30. Ekinci S, Izci D, Abualigah L, Zitar RA (2023) A modified oppositional chaotic local search strategy based aquila optimizer to design an effective controller for vehicle cruise control system. J Bionic Eng 20:1828–1851. https://doi.org/10.1007/s42235-023-00336-y

    Article  Google Scholar 

  31. Yang X, Gong W, Wang L (2019) Comparative study on parameter extraction of photovoltaic models via differential evolution. Energy Convers Manag 201:112113. https://doi.org/10.1016/j.enconman.2019.112113

    Article  Google Scholar 

  32. Duan Z, Yu H, Zhang Q, Tian L (2023) Parameter extraction of solar photovoltaic model based on nutcracker optimization algorithm. Appl Sci 13:6710. https://doi.org/10.3390/app13116710

    Article  Google Scholar 

  33. Li J, Qin C, Yang C et al (2023) Extraction of single diode model parameters of solar cells and pv modules by combining an intelligent optimization algorithm with simplified explicit equation based on lambert W function. Energies (Basel) 16:5425. https://doi.org/10.3390/en16145425

    Article  Google Scholar 

  34. Hejri M, Mokhtari H, Azizian MR et al (2014) On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules. IEEE J Photovolt 4:915–923. https://doi.org/10.1109/JPHOTOV.2014.2307161

    Article  Google Scholar 

  35. Piliougine M, Guejia-Burbano RA, Petrone G et al (2021) Parameters extraction of single diode model for degraded photovoltaic modules. Renew Energy 164:674–686. https://doi.org/10.1016/j.renene.2020.09.035

    Article  Google Scholar 

  36. Li R, Liao Y, Dou Y et al (2021) CoFe2O4 nanocrystals for interface engineering to enhance performance of perovskite solar cells. Sol Energy 220:400–405. https://doi.org/10.1016/j.solener.2021.03.073

    Article  Google Scholar 

  37. Chopde A, Magare D, Patil M et al (2016) Parameter extraction for dynamic PV thermal model using particle swarm optimisation. Appl Therm Eng 100:508–517. https://doi.org/10.1016/j.applthermaleng.2016.01.164

    Article  Google Scholar 

  38. Zagrouba M, Sellami A, Bouaïcha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy 84:860–866. https://doi.org/10.1016/j.solener.2010.02.012

    Article  Google Scholar 

  39. Hasanien HM (2015) Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans Sustain Energy 6:509–515. https://doi.org/10.1109/TSTE.2015.2389858

    Article  Google Scholar 

  40. Biswas PP, Suganthan PN, Wu G, Amaratunga GAJ (2019) Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew Energy 132:425–438. https://doi.org/10.1016/j.renene.2018.07.152

    Article  Google Scholar 

  41. Nayak B, Mohapatra A, Mohanty KB (2019) Parameter estimation of single diode PV module based on GWO algorithm. Renew Energy Focus 30:1–12. https://doi.org/10.1016/j.ref.2019.04.003

    Article  Google Scholar 

  42. Guo L, Meng Z, Sun Y, Wang L (2016) Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers Manag 108:520–528. https://doi.org/10.1016/j.enconman.2015.11.041

    Article  Google Scholar 

  43. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422. https://doi.org/10.1016/j.enconman.2015.05.074

    Article  Google Scholar 

  44. Yu K, Liang JJ, Qu BY et al (2018) Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl Energy 226:408–422. https://doi.org/10.1016/j.apenergy.2018.06.010

    Article  Google Scholar 

  45. Kler D, Sharma P, Banerjee A et al (2017) PV cell and module efficient parameters estimation using Evaporation Rate based water cycle algorithm. Swarm Evol Comput 35:93–110. https://doi.org/10.1016/j.swevo.2017.02.005

    Article  Google Scholar 

  46. Wu Z, Yu D, Kang X (2017) Parameter identification of photovoltaic cell model based on improved ant lion optimizer. Energy Convers Manag 151:107–115. https://doi.org/10.1016/j.enconman.2017.08.088

    Article  Google Scholar 

  47. Chen Z, Wu L, Lin P et al (2016) Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Appl Energy 182:47–57. https://doi.org/10.1016/j.apenergy.2016.08.083

    Article  Google Scholar 

  48. Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S (2022) Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw 174:103282. https://doi.org/10.1016/j.advengsoft.2022.103282

    Article  Google Scholar 

  49. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7:1–25. https://doi.org/10.1137/S1052623493250780

    Article  MathSciNet  Google Scholar 

  50. Maden D, Çelik E, Houssein EH, Sharma G (2023) Squirrel search algorithm applied to effective estimation of solar PV model parameters: a real-world practice. Neural Comput Appl 35:13529–13546. https://doi.org/10.1007/s00521-023-08451-x

    Article  Google Scholar 

  51. Oulcaid M, El Fadil H, Ammeh L et al (2020) Parameter extraction of photovoltaic cell and module: Analysis and discussion of various combinations and test cases. Sustain Energy Technol Assess 40:100736. https://doi.org/10.1016/j.seta.2020.100736

    Article  Google Scholar 

  52. Lewis RM, Torczon V (1999) Pattern search algorithms for bound constrained minimization. SIAM J Optim 9:1082–1099. https://doi.org/10.1137/S1052623496300507

    Article  MathSciNet  Google Scholar 

  53. Wahid F, Ghazali R (2019) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evol Intell 12:1–10. https://doi.org/10.1007/s12065-018-0165-1

    Article  Google Scholar 

  54. Koessler E, Almomani A (2021) Hybrid particle swarm optimization and pattern search algorithm. Optim Eng 22:1539–1555. https://doi.org/10.1007/s11081-020-09534-7

    Article  MathSciNet  Google Scholar 

  55. Ridha HM, Hizam H, Mirjalili S et al (2022) Zero root-mean-square error for single- and double-diode photovoltaic models parameter determination. Neural Comput Appl 34:11603–11624. https://doi.org/10.1007/s00521-022-07047-1

    Article  Google Scholar 

  56. Ayyarao TSLV (2022) Parameter estimation of solar PV models with quantum-based avian navigation optimizer and Newton-Raphson method. J Comput Electron 21:1338–1356. https://doi.org/10.1007/s10825-022-01931-8

    Article  Google Scholar 

  57. Sheng H, Li C, Wang H et al (2019) Parameters Extraction of photovoltaic models using an improved moth-flame optimization. Energies (Basel) 12:3527. https://doi.org/10.3390/en12183527

    Article  Google Scholar 

  58. Yu K, Qu B, Yue C et al (2019) A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl Energy 237:241–257. https://doi.org/10.1016/j.apenergy.2019.01.008

    Article  Google Scholar 

  59. Rizk-Allah RM, El-Fergany AA (2020) Conscious neighborhood scheme-based Laplacian barnacles mating algorithm for parameters optimization of photovoltaic single- and double-diode models. Energy Convers Manag 226:113522. https://doi.org/10.1016/j.enconman.2020.113522

    Article  Google Scholar 

  60. Diab AAZ, Sultan HM, Do TD et al (2020) Coyote Optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access 8:111102–111140. https://doi.org/10.1109/ACCESS.2020.3000770

    Article  Google Scholar 

  61. Long W, Wu T, Xu M et al (2021) Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. Energy 229:120750. https://doi.org/10.1016/j.energy.2021.120750

    Article  Google Scholar 

  62. Nicaire NF, Steve PN, Salome NE, Grégroire AO (2021) Parameter Estimation of the photovoltaic system using bald eagle search (BES) algorithm. Int J Photoenergy 2021:1–20. https://doi.org/10.1155/2021/4343203

    Article  Google Scholar 

  63. Yu S, Heidari AA, Liang G et al (2022) Solar photovoltaic model parameter estimation based on orthogonally-adapted gradient-based optimization. Optik (Stuttg) 252:168513. https://doi.org/10.1016/j.ijleo.2021.168513

    Article  Google Scholar 

  64. Xu B, Heidari AA, Kuang F et al (2022) Quantum Nelder-Mead hunger games search for optimizing photovoltaic solar cells. Int J Energy Res 46:12417–12466. https://doi.org/10.1002/er.8011

    Article  Google Scholar 

  65. Yu S, Chen Z, Heidari AA et al (2022) Parameter identification of photovoltaic models using a sine cosine differential gradient based optimizer. IET Renew Power Gener 16:1535–1561. https://doi.org/10.1049/rpg2.12451

    Article  Google Scholar 

  66. Fan Y, Wang P, Heidari AA et al (2022) Random reselection particle swarm optimization for optimal design of solar photovoltaic modules. Energy 239:121865. https://doi.org/10.1016/j.energy.2021.121865

    Article  Google Scholar 

  67. Xiong G, Li L, Mohamed AW et al (2023) Optimal identification of unknown parameters of photovoltaic models using dual-population gaining-sharing knowledge-based algorithm. Int J Intell Syst 2023:1–24. https://doi.org/10.1155/2023/3788453

    Article  Google Scholar 

  68. Abd El-Mageed AA, Abohany AA, Saad HMH, Sallam KM (2023) Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution. Appl Soft Comput 134:110032. https://doi.org/10.1016/j.asoc.2023.110032

    Article  Google Scholar 

  69. Gu Z, Xiong G, Fu X et al (2023) Extracting accurate parameters of photovoltaic cell models via elite learning adaptive differential evolution. Energy Convers Manag 285:116994. https://doi.org/10.1016/j.enconman.2023.116994

    Article  Google Scholar 

  70. Lu Y, Liang S, Ouyang H et al (2023) Hybrid multi-group stochastic cooperative particle swarm optimization algorithm and its application to the photovoltaic parameter identification problem. Energy Rep 9:4654–4681. https://doi.org/10.1016/j.egyr.2023.03.105

    Article  Google Scholar 

  71. Satria H, Syah RBY, Nehdi ML et al (2023) Parameters identification of solar PV using hybrid chaotic northern goshawk and pattern search. Sustainability 15:5027. https://doi.org/10.3390/su15065027

    Article  Google Scholar 

  72. Qaraad M, Amjad S, Hussein NK et al (2023) Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators. Comput Electr Eng 106:108603. https://doi.org/10.1016/j.compeleceng.2023.108603

    Article  Google Scholar 

  73. Yu X, Hu Z, Wang X, Luo W (2023) Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models. Eng Appl Artif Intell 123:106225. https://doi.org/10.1016/j.engappai.2023.106225

    Article  Google Scholar 

  74. Chauhan S, Vashishtha G, Kumar A (2023) Approximating parameters of photovoltaic models using an amended reptile search algorithm. J Ambient Intell Humaniz Comput 14:9073–9088. https://doi.org/10.1007/s12652-022-04412-9

    Article  Google Scholar 

  75. Bogar E (2023) Chaos game optimization-least squares algorithm for photovoltaic parameter estimation. Arab J Sci Eng 48:6321–6340. https://doi.org/10.1007/s13369-022-07364-6

    Article  Google Scholar 

  76. Ayyarao TSLV, Kishore GI (2023) Parameter estimation of solar PV models with artificial humming bird optimization algorithm using various objective functions. Soft comput. https://doi.org/10.1007/s00500-023-08630-x

    Article  Google Scholar 

  77. Premkumar M, Jangir P, Ramakrishnan C et al (2022) An enhanced gradient-based optimizer for parameter estimation of various solar photovoltaic models. Energy Rep 8:15249–15285. https://doi.org/10.1016/j.egyr.2022.11.092

    Article  Google Scholar 

  78. Kumar C, Raj TD, Premkumar M, Raj TD (2020) A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik 1(223):165277

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Davut Izci was contributed to software, resources, writing—original draft, supervision, methodology, conceptualization, formal analysis, review and editing. Serdar Ekinci was contributed to supervision, methodology, conceptualization, writing—original draft. Maryam Altalhi was contributed to formal analysis, writing—review and editing. Mohammad Sh. Daoud was contributed to formal analysis, writing—review and editing. Hazem Migdady was contributed to formal analysis, writing—review and editing. Laith Abualigah was contributed to formal analysis, writing—review and editing. All authors read and approved the final paper.

Corresponding author

Correspondence to Laith Abualigah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izci, D., Ekinci, S., Altalhi, M. et al. A new modified version of mountain gazelle optimization for parameter extraction of photovoltaic models. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02375-y

Keywords

Navigation