Skip to main content
Log in

Squirrel search algorithm applied to effective estimation of solar PV model parameters: a real-world practice

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Model parameters estimation of solar photovoltaic (PV) cells/modules using real current–voltage (I–V) data is a critical task for the performance of PV systems. Therefore, there is a necessity to procure optimal parameters of PV models using proper optimization techniques. For this aim, squirrel search algorithm (SSA) as the recent and powerful tool is employed to accomplish the mentioned task in the single-diode model (SDM) and double-diode model (DDM) of a PV unit. Of course, better parameter values can be obtained by reducing the error between the experimental and model-based estimated data. Analyses are performed under two case studies. The former considers a standard dataset of R.T.C. France silicon solar cell, whereas the latter uses an experimental dataset of a polycrystalline CS6P-220P solar module. The I-V data of this PV module were acquired when it worked under 30 °C and solar radiance of 1000W/m2 at the Engineering Faculty Campus of Düzce University, Turkey. The results of the first case study are compared with those of other prevalent approaches, which demonstrate the superiority of SSA over its competing peers. Moreover, SSA is found to handle the model parameters definition of an industrial PV module located at the university campus. Thus, the new method offers a practical tool beneficial to boost the effectiveness of PV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The research data presented in the work can be made available on reasonable request.

References

  1. Rezk H, Babu TS, Al-Dhaifallah M, Ziedan HA (2021) A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters. Energy Rep 7:620–640

    Article  Google Scholar 

  2. Hao P, Zhang Y (2021) An improved method for parameter identification and performance estimation of PV modules from manufacturer datasheet based on temperature-dependent single-diode model. IEEE J Photovolt 11(6):1446–1457

    Article  Google Scholar 

  3. Farah A, Belazi A, Benabdallah F, Almalaq A, Chtourou M, Abido MA (2022) Parameter extraction of photovoltaic models using a comprehensive learning Rao-1 algorithm. Energy Convers Manag 252(12):115057

    Article  Google Scholar 

  4. Garip Z, Çimen ME, Boz AF (2021) Comparative performance analysis in parameter extraction of solar cell models using meta-heuristic algorithms. J Fac Eng Archit Gazi Univ 36(2):1133–1144

    Google Scholar 

  5. Abdalla O, Rezk H, Ahmed EM (2019) Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance. Sol Energy 180(8):429–444

    Article  Google Scholar 

  6. Ben Messaoud R (2020) Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization. Energy Rep 6:350–357

    Article  Google Scholar 

  7. Saleem H, Karmalkar S (2009) An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J–V curve. IEEE Electron Device Lett 30(4):349–352

    Article  Google Scholar 

  8. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422

    Article  Google Scholar 

  9. Liao Z, Chen Z, Li S (2020) Parameters Extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access 8:69937–69952

    Article  Google Scholar 

  10. Yaghoubi M, Eslami M, Noroozi M, Mohammadi H, Kamari O, Palani S (2022) Modified salp swarm optimization for parameter estimation of solar PV models. IEEE Access 10(10):110181–110194

    Article  Google Scholar 

  11. Montano JJ, Grisales Norena LF, Tobon AF, Gonzalez Montoya D (2020) Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat Am Trans 20(4):616–623

    Article  Google Scholar 

  12. Premkumar M, Jangir P, Ramakrishnan C, Nalinipriya G, Alhelou HH, Kumar BS (2021) Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access 9:62347–62379

    Article  Google Scholar 

  13. Eltamaly AM (2022) Musical chairs algorithm for parameters estimation of PV cells. Sol Energy 241(6):601–620

    Article  Google Scholar 

  14. Qais MH, Muyeen SM, Member S (2022) Parameter estimation technique for photovoltaic system. IEEE Trans Energy Convers 37(1):286–294

    Article  Google Scholar 

  15. Qaraad M, Amjad S, Hussein NK, Badawy M, Mirjalili S, Elhosseini MA (2023) Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators. Comput Electr Eng 106(1):108603

    Article  Google Scholar 

  16. Ramadan HA, Khan B, Zaki Diab AA (2022) Accurate parameters estimation of three diode model of photovoltaic modules using hunter-prey and wild horse optimizers. IEEE Access 10(7):87435–87453

    Article  Google Scholar 

  17. Khelifa MA, Lekouaghet B, Boukabou A (2022) Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters. Optik (Stuttg) 259(7):168873

    Article  Google Scholar 

  18. Sheng H et al (2019) Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 12(18):3527

    Article  Google Scholar 

  19. Nunes HGG, Pombo JAN, Bento PMR, Mariano SJPS, Calado MRA (2019) Collaborative swarm intelligence to estimate PV parameters. Energy Convers Manag 185(2):866–890

    Article  Google Scholar 

  20. Nunes HGG, Pombo JAN, Mariano SJPS, Calado MRA, Felippe de Souza JAM (2018) A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl Energy 211(11):774–791

    Article  Google Scholar 

  21. Louzazni M, Khouya A, Amechnoue K, Gandelli A, Mussetta M, Craciunescu A (2018) Metaheuristic algorithm for photovoltaic parameters: comparative study and prediction with a firefly algorithm. Appl Sci 8(3):1–22

    Article  Google Scholar 

  22. Awadallah MA (2016) Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data. Energy Convers Manag 113:312–320

    Article  Google Scholar 

  23. Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174(8):388–405

    Article  Google Scholar 

  24. Gao X et al (2018) Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers Manag 157(12):460–479

    Article  Google Scholar 

  25. Ibrahim IA, Hossain MJ, Duck BC, Fell CJ (2020) An adaptive wind-driven optimization algorithm for extracting the parameters of a single-diode PV cell model. IEEE Trans Sustain Energy 11(2):1054–1066

    Article  Google Scholar 

  26. Ismaeel AAK, Houssein EH, Oliva D, Said M (2021) Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access 9:13403–13416

    Article  Google Scholar 

  27. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44(11):148–175

    Article  Google Scholar 

  28. Zhu L, Zhou Y, Sun S, Su Q (2022) A discrete squirrel search algorithm for the surgical cases assignment problem. Appl Soft Comput 121:108753

    Article  Google Scholar 

  29. Sakthivel VP, Suman M, Sathya PD (2021) Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm. Appl Soft Comput 100:106950

    Article  Google Scholar 

  30. Dhaini M, Mansour N (2021) Squirrel search algorithm for portfolio optimization. Expert Syst Appl 178(4):114968

    Article  Google Scholar 

  31. Rautray R, et al. (2021) ASSIE: application of squirrel search algorithm for information extraction problem. In: 2021 International conference in advances in power, signal, and information technology APSIT 2021.

  32. Abd El Ghafour MG, Kamel SH, Abouelseoud Y (2021) Improved DV-hop based on squirrel search algorithm for localization in wireless sensor networks. Wirel Netw 27(4):2743–2759

    Article  Google Scholar 

  33. Çelik E (2023) IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning. Knowl Based Syst 260:110169

    Article  Google Scholar 

  34. Hsieh YC, Yu LR, Chang TC, Liu WC, Wu TH, Moo CS (2020) Parameter identification of one-diode dynamic equivalent circuit model for photovoltaic panel. IEEE J Photovolt 10(1):219–225

    Article  Google Scholar 

  35. Yu K, Liang JJ, Qu BY, Chen X, Wang H (2017) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Conver Manag 150(July):742–753

    Article  Google Scholar 

  36. Thomas RB, Peter D (1998) Dynamic Foraging behavior in the southern flying squirrel (Glaucomys volans): test of a model. Am Midl Nat 140(2):264–270

    Article  Google Scholar 

  37. Vernes K (2001) Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. J Mammal 82(4):1026–1033

    Article  Google Scholar 

  38. Stapp P, Pekins PJ, Mautz WW (1991) Winter energy expenditure and the distribution of southern flying squirrels. Can J Zool 69(10):2548–2555

    Article  Google Scholar 

  39. Chen X, Yue H, Yu K (2019) Perturbed stochastic fractal search for solar PV parameter estimation. Energy 189:116247

    Article  Google Scholar 

  40. Zhang H, Heidari AA, Wang M, Zhang L, Chen H, Li C (2020) Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Conver Manag 211:112764

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DM: Conceptualization, methodology, collecting data. EÇ: Supervision, formal analysis, experimentation, software, writing–original draft preparation. EHH: Literature review, visualization, interpretation of results. GS: Literature review, writing, reviewing and proofreading.

Corresponding author

Correspondence to Emre Çelik.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interest that may have appeared to affect the research reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 4 Experimental voltage and current data for R.T.C. France silicon solar cell

4 and

Table 5 Experimental voltage and current data for CS6P-220P PV module

5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maden, D., Çelik, E., Houssein, E.H. et al. Squirrel search algorithm applied to effective estimation of solar PV model parameters: a real-world practice. Neural Comput & Applic 35, 13529–13546 (2023). https://doi.org/10.1007/s00521-023-08451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08451-x

Keywords

Navigation