Skip to main content
Log in

On the assessment of meta-heuristic algorithms for automatic voltage regulator system controller design: a standardization process

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Meta-heuristic algorithms (MHAs) have gained popularity in recent years due to their successful results in solving a wide variety of scientific problems. They offer ease of use, fast implementation, and effective convergence toward the optimal solution. Although MHAs have been extensively tested in solving well-known mathematical benchmark problems with one or more dimensions as well as civil and mechanical engineering problems in their initial demonstrations, controller design problems are not typically considered. Furthermore, the literature lacks a standardized optimization process for controller design problems using MHAs. Due to variations in iteration numbers, population sizes, number of trials, objective functions, and insufficient analysis presented in research papers, it becomes challenging to compare and evaluate the controller design performance of MHAs in a successful and fair manner. This work aims to establish a standardized approach for evaluating the performance of MHAs in controller design by proposing a consistent function evaluation metric. To achieve this goal, we present the most comprehensive and comparative study of MHAs’ performance in controller design conducted to date. In this paper, we utilize two commonly used objective functions in controller design: Zwe Lee Gaing and Integral Time Absolute Error. Additionally, we employ a total of twenty algorithms, consisting of ten classical algorithms and ten recently popular algorithms. We evaluate the performance of these algorithms on the “automatic voltage regulation” electric power system problem, which serves as a widely used benchmark for meta-heuristically optimized controllers. We consider three different controllers with three (PID), five (FOPID), and seven (FOPIDD) parameters. The performance results of the selected algorithms are thoroughly discussed, considering various analysis techniques such as box plot analysis, convergence curves, and transient response performances, as well as statistical tests like Wilcoxon and Friedman tests. As a result, symbiotic organisms search, teaching–learning based optimization, chaos game optimization, supply–demand based optimization, and jellyfish search algorithms generally emerge as the best-performing algorithms across all optimization processes for the three types of controllers. Researchers interested in conducting further analysis and comparing the improved algorithms can access all the models,parameters, and codes used in this study from the provided link (https://www.mathworks.com/matlabcentral/fileexchange/161336-fractional-order-controller-optimization-for-avr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Dehghani M, Trojovská E, Zuščák T (2022) A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci Rep 12:17387. https://doi.org/10.1038/s41598-022-22458-9

    Article  Google Scholar 

  2. Kaya E, Gorkemli B, Akay B, Karaboga D (2022) A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems. Eng Appl Artif Intell 115:105311. https://doi.org/10.1016/j.engappai.2022.105311

    Article  Google Scholar 

  3. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43. https://doi.org/10.1109/MHS.1995.494215

    Chapter  Google Scholar 

  4. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  5. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  Google Scholar 

  6. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Ins Comput 2:78. https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  7. Yang XS, Suash D (2009) Cuckoo search via Levy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC), IEEE, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  8. Mirjalili S, Lewis A (2016) The Whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Gray Wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  10. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  11. Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W (2022) Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 114:105082. https://doi.org/10.1016/j.engappai.2022.105082

    Article  Google Scholar 

  12. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  13. Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput. https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  14. Storn R, Price K (1997) Differential evolution – a simple and efficient Heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  15. Rechenberg I (1989) Evolution strategy: nature’s way of optimization. pp 106–126. https://doi.org/10.1007/978-3-642-83814-9_6

  16. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. Caltech Concurr Comput Progr 826:37

    Google Scholar 

  17. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aid Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  18. Mousavirad SJ, Ebrahimpour-Komleh H (2017) Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell 47:850–887. https://doi.org/10.1007/s10489-017-0903-6

    Article  Google Scholar 

  19. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  20. SamarehMoosavi SH, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025

    Article  Google Scholar 

  21. Dai C, Zhu Y, Chen W (2007) Seeker optimization algorithm. pp 167–176. https://doi.org/10.1007/978-3-540-74377-4_18

  22. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, IEEE, pp 4661–4667. https://doi.org/10.1109/CEC.2007.4425083

  23. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (N Y) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  24. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  25. Kirkpatrick S, Gelatt CD, Vecchi MP (1979) Optimization by simulated annealing. Science 220(1983):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  Google Scholar 

  26. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  27. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126

    Article  Google Scholar 

  28. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  29. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  30. Dehghani M, Mardaneh M, Guerrero J, Malik O, Kumar V (2020) Football game based optimization: an application to solve energy commitment problem. Int J Intell Eng Syst 13:514–523. https://doi.org/10.22266/ijies2020.1031.45

    Article  Google Scholar 

  31. Zeidabadi FA, Dehghani M (2022) POA: puzzle optimization algorithm. Int J Intell Eng Syst. https://doi.org/10.22266/ijies2022.0228.25

    Article  Google Scholar 

  32. Dehghani M, Montazeri Z, Malik OP (2019) DGO: dice game optimizer. Gazi Univ J Sci 32:871–882. https://doi.org/10.35378/gujs.484643

    Article  Google Scholar 

  33. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247. https://doi.org/10.1016/j.cageo.2011.12.011

    Article  Google Scholar 

  34. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  Google Scholar 

  35. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  36. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  37. Zhao W, Wang L, Zhang Z (2019) Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization. IEEE Access 7:73182–73206. https://doi.org/10.1109/ACCESS.2019.2918753

    Article  Google Scholar 

  38. Zhang X, Lin Q, Mao W, Liu S, Dou Z, Liu G (2021) Hybrid particle Swarm and Gray Wolf optimizer and its application to clustering optimization. Appl Soft Comput 101:107061. https://doi.org/10.1016/j.asoc.2020.107061

    Article  Google Scholar 

  39. Brajević I, Stanimirović PS, Li S, Cao X, Khan AT, Kazakovtsev LA (2022) Hybrid sine cosine algorithm for solving engineering optimization problems. Mathematics 10:4555. https://doi.org/10.3390/math10234555

    Article  Google Scholar 

  40. Pirozmand P, Javadpour A, Nazarian H, Pinto P, Mirkamali S, Ja’fari F (2022) GSAGA: A hybrid algorithm for task scheduling in cloud infrastructure. J Supercomput 78:17423–17449. https://doi.org/10.1007/s11227-022-04539-8

    Article  Google Scholar 

  41. Long W, Cai S, Jiao J, Xu M, Wu T (2020) A new hybrid algorithm based on Gray wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers Manag 203:112243. https://doi.org/10.1016/j.enconman.2019.112243

    Article  Google Scholar 

  42. Yu X, Jiang N, Wang X, Li M (2023) A hybrid algorithm based on Gray wolf optimizer and differential evolution for UAV path planning. Expert Syst Appl 215:119327. https://doi.org/10.1016/j.eswa.2022.119327

    Article  Google Scholar 

  43. Micev M, Ćalasan M, Ali ZM, Hasanien HM, Abdel Aleem SHE (2021) Optimal design of automatic voltage regulation controller using hybrid simulated annealing – Manta ray foraging optimization algorithm. Ain Shams Eng J 12:641–657. https://doi.org/10.1016/j.asej.2020.07.010

    Article  Google Scholar 

  44. Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowl Based Syst 190:105169. https://doi.org/10.1016/j.knosys.2019.105169

    Article  Google Scholar 

  45. Özkaynak F (2015) A novel method to improve the performance of chaos based evolutionary algorithms. Optik (Stuttg) 126:5434–5438. https://doi.org/10.1016/j.ijleo.2015.09.098

    Article  Google Scholar 

  46. Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl Intell 49:188–205. https://doi.org/10.1007/s10489-018-1261-8

    Article  Google Scholar 

  47. Brajevic I, Stanimirovic P (2018) An improved chaotic firefly algorithm for global numerical optimization. Int J Comput Intell Syst 12:131–148

    Article  Google Scholar 

  48. Li Y, Han M, Guo Q (2020) Modified Whale optimization algorithm based on tent chaotic mapping and its application in structural optimization. KSCE J Civ Eng 24:3703–3713. https://doi.org/10.1007/s12205-020-0504-5

    Article  Google Scholar 

  49. Micev M, Ćalasan M, Oliva D (2020) Fractional order PID controller design for an AVR system using chaotic yellow saddle goatfish algorithm. Mathematics 8:1182. https://doi.org/10.3390/math8071182

    Article  Google Scholar 

  50. Munagala VK, Jatoth RK (2022) Improved fractional PIλDμ controller for AVR system using chaotic black widow algorithm. Comput Electr Eng 97:107600. https://doi.org/10.1016/j.compeleceng.2021.107600

    Article  Google Scholar 

  51. Guvenc U, Duman S, Kahraman HT, Aras S, Katı M (2021) Fitness-distance balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Appl Soft Comput 108:107421. https://doi.org/10.1016/j.asoc.2021.107421

    Article  Google Scholar 

  52. Bakır H (2024) Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem. Expert Syst Appl 240:122460. https://doi.org/10.1016/j.eswa.2023.122460

    Article  Google Scholar 

  53. Aras S, Gedikli E, Kahraman HT (2021) A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization. Swarm Evol Comput 61:100821. https://doi.org/10.1016/j.swevo.2020.100821

    Article  Google Scholar 

  54. Brajević I (2021) A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems. Mathematics 9:1211. https://doi.org/10.3390/math9111211

    Article  Google Scholar 

  55. Li Y, Yuan Q, Han M, Cui R (2022) Hybrid multi-strategy improved wild horse optimizer. Adv Intell Syst 4:2200097. https://doi.org/10.1002/aisy.202200097

    Article  Google Scholar 

  56. Gharehchopogh FS, Abdollahzadeh B (2022) An efficient Harris Hawk optimization algorithm for solving the travelling salesman problem. Clust Comput 25:1981–2005. https://doi.org/10.1007/s10586-021-03304-5

    Article  Google Scholar 

  57. Gharehchopogh FS, Farnad B, Alizadeh A (2021) A modified farmland fertility algorithm for solving constrained engineering problems. Concurr Comput 33:6310. https://doi.org/10.1002/cpe.6310

    Article  Google Scholar 

  58. Kaveh M, Mesgari MS, Saeidian B (2023) Orchard algorithm (OA): a new meta-heuristic algorithm for solving discrete and continuous optimization problems. Math Comput Simul 208:95–135. https://doi.org/10.1016/j.matcom.2022.12.027

    Article  MathSciNet  Google Scholar 

  59. Rostami O, Kaveh M (2021) Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning. Comput Geosci 25:911–930. https://doi.org/10.1007/s10596-020-10030-1

    Article  Google Scholar 

  60. Eslami N, Yazdani S, Mirzaei M, Hadavandi E (2022) Aphid-Ant Mutualism: a novel nature-inspired metaheuristic algorithm for solving optimization problems. Math Comput Simul 201:362–395. https://doi.org/10.1016/j.matcom.2022.05.015

    Article  MathSciNet  Google Scholar 

  61. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey Badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110. https://doi.org/10.1016/j.matcom.2021.08.013

    Article  MathSciNet  Google Scholar 

  62. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  63. Goldanloo MJ, Gharehchopogh FS (2022) A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. J Supercomput 78:3998–4031. https://doi.org/10.1007/s11227-021-04015-9

    Article  Google Scholar 

  64. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014

  65. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  66. Rajeswara Rao B, Tiwari R (2007) Optimum design of rolling element bearings using genetic algorithms. Mech Mach Theory 42:233–250. https://doi.org/10.1016/j.mechmachtheory.2006.02.004

    Article  Google Scholar 

  67. Arora JS (2004) Introduction to optimum design. Elsevier

    Book  Google Scholar 

  68. Siddall JN (1972) Analytical decision-making in engineering design. Prentice Hall, Hoboken

    Google Scholar 

  69. Rao SS (2011) The finite element method in engineering. Elsevier, New York

    Google Scholar 

  70. Kaveh A, Bakhshpoori T (2013) Optimum design of space trusses using cuckoo search algorithm with levy flights. Iranian Journal of Science and Technology Transaction B-Engineering

  71. Kazikova A, Pluhacek M, Senkerik R (2021) How does the number of objective function evaluations impact our understanding of metaheuristics behavior? IEEE Access 9:44032–44048. https://doi.org/10.1109/ACCESS.2021.3066135

    Article  Google Scholar 

  72. Xue D, Chen Y, Atherton DP (2007) Linear feedback control: analysis and design with MATLAB, SIAM

  73. Ayas MS, Sahin E (2021) FOPID controller with fractional filter for an automatic voltage regulator. Comput Electr Eng 90:106895. https://doi.org/10.1016/j.compeleceng.2020.106895

    Article  Google Scholar 

  74. Ekinci S, Hekimoglu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947. https://doi.org/10.1109/ACCESS.2019.2906980

    Article  Google Scholar 

  75. Jegatheesh A, Thiyagarajan V, Selvan NBM, Raj MD (2023) Voltage regulation and stability enhancement in AVR system based on SOA-FOPID controller. J Electr Eng Technol. https://doi.org/10.1007/s42835-023-01507-x

    Article  Google Scholar 

  76. Can Ö, Andiç C, Ekinci S, Izci D (2023) Enhancing transient response performance of automatic voltage regulator system by using a novel control design strategy. Electr Eng. https://doi.org/10.1007/s00202-023-01777-8

    Article  Google Scholar 

  77. Moschos I, Parisses C (2022) A novel optimal PIλDND2N2 controller using Coyote optimization algorithm for an AVR system. Eng Sci Technol Int J 26:100991. https://doi.org/10.1016/j.jestch.2021.04.010

    Article  Google Scholar 

  78. Tabak A (2021) Maiden application of fractional order PID plus second order derivative controller in automatic voltage regulator. Int Transa Electr Energy Syst. https://doi.org/10.1002/2050-7038.13211

    Article  Google Scholar 

  79. Tabak A (2021) A novel fractional order PID plus derivative (PIλDD2) controller for AVR system using equilibrium optimizer. COMPEL-Int J Comput Math Electr Electron Eng 40:722–743. https://doi.org/10.1108/COMPEL-02-2021-0044

    Article  Google Scholar 

  80. Bhullar AK, Kaur R, Sondhi S (2022) Optimization of fractional order controllers for AVR system using distance and Levy-flight based crow search algorithm. IETE J Res 68:3900–3917. https://doi.org/10.1080/03772063.2020.1782779

    Article  Google Scholar 

  81. Bhookya J, Jatoth RK (2019) Optimal FOPID/PID controller parameters tuning for the AVR system based on sine–cosine-algorithm. Evol Intell 12:725–733. https://doi.org/10.1007/s12065-019-00290-x

    Article  Google Scholar 

  82. Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Franklin Inst 355:5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056

    Article  MathSciNet  Google Scholar 

  83. Çelik E, Durgut R (2018) Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Eng Sci Technol Int J 21:1104–1111. https://doi.org/10.1016/j.jestch.2018.08.006

    Article  Google Scholar 

  84. Zeng GQ, Chen J, Dai YX, Li LM, Zheng CW, Chen MR (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184. https://doi.org/10.1016/j.neucom.2015.02.051

    Article  Google Scholar 

  85. Mohanty PK, Sahu BK, Panda S (2014) Tuning and assessment of proportional–integral–derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm. Electr Power Compon Syst 42:959–969. https://doi.org/10.1080/15325008.2014.903546

    Article  Google Scholar 

  86. Paliwal N, Srivastava L, Pandit M (2021) Equilibrium optimizer tuned novel FOPID-DN controller for automatic voltage regulator system. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12930

    Article  Google Scholar 

  87. Altbawi SMA, Bin Mokhtar AS, Jumani TA, Khan I, Hamadneh NN, Khan A (2021) Optimal design of fractional order PID controller based automatic voltage regulator system using gradient-based optimization algorithm. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2021.07.009

    Article  Google Scholar 

  88. Jumani TA, Mustafa MW, Hussain Z, Rasid MM, Saeed MS, Memon MM, Khan I, Nisar KS (2020) Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system. Alexandria Eng J 59:2429–2440. https://doi.org/10.1016/j.aej.2020.03.005

    Article  Google Scholar 

  89. Zhou G, Li J, Tang Z, Luo Q, Zhou Y (2020) An improved spotted hyena optimizer for PID parameters in an AVR system. Math Biosci Eng 17:3767–3783. https://doi.org/10.3934/mbe.2020211

    Article  Google Scholar 

  90. Khan IA, Alghamdi AS, Jumani TA, Alamgir A, Awan AB, Khidrani A (2019) Salp Swarm optimization algorithm-based fractional order PID controller for dynamic response and stability enhancement of an automatic voltage regulator system. Electronics (Basel) 8:1472. https://doi.org/10.3390/electronics8121472

    Article  Google Scholar 

  91. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Automat Electr Syst 27:419–440. https://doi.org/10.1007/s40313-016-0242-6

    Article  Google Scholar 

  92. Panda S, Sahu BK, Mohanty PK (2012) Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. J Franklin Inst 349:2609–2625. https://doi.org/10.1016/j.jfranklin.2012.06.008

    Article  MathSciNet  Google Scholar 

  93. Li X, Wang Y, Li N, Han M, Tang Y, Liu F (2017) Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. Int J Mach Learn Cybern 8:1595–1605. https://doi.org/10.1007/s13042-016-0530-2

    Article  Google Scholar 

  94. Kose E (2020) Optimal control of avr system with tree seed algorithm-based PID controller. IEEE Access 8:89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628

    Article  Google Scholar 

  95. Güvenç U, Yiğit T, Işik AH, Akkaya İ (2016) Performance analysis of biogeography-based optimization for automatic voltage regulator system. Turk J Electr Eng Comput Sci 24:1150–1162. https://doi.org/10.3906/elk-1311-111

    Article  Google Scholar 

  96. Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Franklin Inst 348:1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012

    Article  Google Scholar 

  97. Mosaad AM, Attia MA, Abdelaziz AY (2019) Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng J 10:755–767. https://doi.org/10.1016/j.asej.2019.07.004

    Article  Google Scholar 

  98. Mosaad AM, Attia MA, Abdelaziz AY (2018) Comparative performance analysis of AVR controllers using modern optimization techniques. Electr Power Compon Syst 46:2117–2130. https://doi.org/10.1080/15325008.2018.1532471

    Article  Google Scholar 

  99. Vahid-Pakdel MJ, Seyedi H, Mohammadi-Ivatloo B (2018) Enhancement of power system voltage stability in multi-carrier energy systems. Int J Electr Power Energy Syst 99:344–354. https://doi.org/10.1016/j.ijepes.2018.01.026

    Article  Google Scholar 

  100. Vanfretti L, Arava VSN (2020) Decision tree-based classification of multiple operating conditions for power system voltage stability assessment. Int J Electr Power Energy Syst 123:106251. https://doi.org/10.1016/j.ijepes.2020.106251

    Article  Google Scholar 

  101. Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, Hatziargyriou N, Hill D, Stankovic A, Taylor C, Van Cutsem T (2004) Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19:1387–1401. https://doi.org/10.1109/TPWRS.2004.825981

    Article  Google Scholar 

  102. Kundur PS, Malik OP (2022) Power system stability and control. McGraw-Hill Education, New York

    Google Scholar 

  103. Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18:194–206. https://doi.org/10.1016/j.jestch.2014.11.006

    Article  Google Scholar 

  104. Podlubny I (1999) Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers. IEEE Trans Automat Contr 44:208–214. https://doi.org/10.1109/9.739144

    Article  Google Scholar 

  105. Xue D, Zhao C, Chen Y (2006) A modified approximation method of fractional order system. In: 2006 international conference on mechatronics and automation, IEEE, pp 1043–1048. https://doi.org/10.1109/ICMA.2006.257769.

  106. Ghosh A, Ray AK, Nurujjaman Md, Jamshidi M (2021) Voltage and frequency control in conventional and PV integrated power systems by a particle swarm optimized Ziegler-Nichols based PID controller. SN Appl Sci 3:314. https://doi.org/10.1007/s42452-021-04327-8

    Article  Google Scholar 

  107. Chopra N, Ansari MM (2022) Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl 198:116924. https://doi.org/10.1016/j.eswa.2022.116924

    Article  Google Scholar 

  108. Chou JS, Truong DN (2021) A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl Math Comput 389:125535. https://doi.org/10.1016/j.amc.2020.125535

    Article  MathSciNet  Google Scholar 

  109. Talatahari S, Azizi M (2021) Chaos game optimization: a novel metaheuristic algorithm. Artif Intell Rev 54:917–1004. https://doi.org/10.1007/s10462-020-09867-w

    Article  Google Scholar 

  110. Naruei I, Keynia F (2022) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng Comput 38:3025–3056. https://doi.org/10.1007/s00366-021-01438-z

    Article  Google Scholar 

  111. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl Based Syst 195:105709. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  112. Kaveh A, Talatahari S, Khodadadi N (2022) Stochastic paint optimizer: theory and application in civil engineering. Eng Comput 38:1921–1952. https://doi.org/10.1007/s00366-020-01179-5

    Article  Google Scholar 

  113. Alsattar HA, Zaidan AA, Zaidan BB (2020) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 53:2237–2264. https://doi.org/10.1007/s10462-019-09732-5

    Article  Google Scholar 

  114. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  115. Gaing ZL (2004) A particle Swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391. https://doi.org/10.1109/TEC.2003.821821

    Article  Google Scholar 

  116. Carrasco J, García S, Rueda MM, Das S, Herrera F (2020) Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evol Comput 54:100665. https://doi.org/10.1016/j.swevo.2020.100665

    Article  Google Scholar 

  117. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, CoelloCoello CA, Herrera F (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BÇ: writing–original draft, conceptualization, methodology, software, formal analysis. EŞ: writing–original draft, validation, software, formal analysis. ES: writing–original draft, software, visualization.

Corresponding author

Correspondence to Bora Çavdar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, B., Şahin, E. & Sesli, E. On the assessment of meta-heuristic algorithms for automatic voltage regulator system controller design: a standardization process. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02314-x

Keywords

Navigation