Skip to main content

A Mini-review: Conventional and Metaheuristic Optimization Methods for the Solution of Optimal Power Flow (OPF) Problem

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2020)

Abstract

Electric power from several sources in an electrical power system is to be accurately planned for economical and reliable operation. Power loss minimization, generation, and fuel cost minimization, voltage stability and carbon emission reduction are the prominent advantages of OFP. Thus, recently, the optimal solution of OPF become a valuable part of power system planning and optimization. This paper presents a mini-review on methods applied for the OPF solution. The applied methods include conventional and metaheuristic methodologies for solving the OPF problem. Moreover, the most recently applied metaheuristic methods for solving the OPF problem are covered and presented, including considered OFP type, validation test system, and numerous optimization objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elkadeem, M.R., Elaziz, M.A., Ullah, Z., Wang, S., Sharshir, S.W.: Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access 7, 164887–164907 (2019)

    Article  Google Scholar 

  2. Ullah, Z., Wang, S., Radosavljević, J.: A novel method based on PPSO for optimal placement and sizing of distributed generation. IEEJ Trans. Electr. Electron. Eng. 14, 1754–1763 (2019)

    Article  Google Scholar 

  3. Ullah, Z., Elkadeem, M.R., Wang, S.: Artificial intelligence technique for optimal allocation of renewable energy based DGs in distribution networks. Advances on Broad-Band Wireless Computing, Communication and Applications BWCCA 2019. Lecture Notes in Networks and Systems, vol. 97, pp. 409–422. Springer, Cham (2020)

    Chapter  Google Scholar 

  4. Elkadeem, M.R., Wang, S., Azmy, A.M., Atiya, E.G., Ullah, Z., Sharshir, S.W.: A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: a case study on an urban community in Egypt. Sustain. Cities Soc. 54, 102013 (2020)

    Article  Google Scholar 

  5. Anuta, H., Ralon, P., Taylor, M.: Renewable power generation costs. In: 2018 International Renewable Energy Agency, IRENA (2019), Abu Dhabi, p. 2018 (2019)

    Google Scholar 

  6. Momoh, J.A.: IEEE Trans. Power Syst. 14(1), 96–104 (1999)

    Article  Google Scholar 

  7. Mo, J.A., El-Hawary, M.E., Adapa, R.: Noh 11 Engineering: IEEE Transactions on A Review of Selected Optimal Power Flow Literature to 1993 Part II: Newton, Linear Programming and Interior Point Methods. Power Syst., vol. 14, no. 1, pp. 105–111 (1999)

    Google Scholar 

  8. Zhu, J.: Optimization of Power System Operation, 2nd edn. Wiley, New Jersey (2015)

    Google Scholar 

  9. Wells, D.W.: Method for economic secure loading of a power system. Proc. Inst. Electr. Eng. 115(8), 1190 (1968)

    Article  Google Scholar 

  10. Stott, B.: Lip, Imx. Power, vol. 2(5) (1978)

    Google Scholar 

  11. Shen, C.M., Laughton, M.A.: Power-system load scheduling with security constraints using dual linear programming. Proc. Inst. Electr. Eng. 117(11), 2117–2127 (1970)

    Article  Google Scholar 

  12. Shen, C.M., Laughton, M.A.: Determination of optimum power-system operating conditions under constraints. Proc. Inst. Electr. Eng. 116(2), 225 (1969)

    Article  Google Scholar 

  13. Sasson, A.M.: Combined use of the Powell and Fletcher—Powell nonlinear programming methods for optimal load flows. IEEE Trans. Power Appar. Syst. PAS-88(10), 1530–1537 (1969)

    Article  Google Scholar 

  14. El-Abiad, A.H., Jaimes, F.J., Fisher, G.J.: A method for optimum scheduling of power and voltage magnitude. IEEE Trans. Power Appar. Syst. PAS-88(4), 413–422 (1969)

    Article  Google Scholar 

  15. Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. PAS-87(10), 1866–1876 (1968)

    Article  Google Scholar 

  16. Sasson, A.M.: Decomposition techniques applied to the nonlinear programming load-flow method. IEEE Trans. Power Appar. Syst. PAS-89(1), 78–82 (1970)

    Article  Google Scholar 

  17. Contaxis, G.C., Delkis, C., Korres, G.: Decoupled optimal load flow using linear or quadratic programming. IEEE Trans. Power Syst. 1(2), 1–7 (1986)

    Article  Google Scholar 

  18. Nabona, N., Freris, L.L.: Optimisation of economic dispatch through quadratic and linear programming. Proc. Inst. Electr. Eng. 120(5), 574–580 (1973)

    Article  Google Scholar 

  19. Monticelli, A., Liu, W.H.E.: Adaptive movement penalty method for the Newton optimal power flow. IEEE Trans. Power Syst. 7(1), 334–342 (1992)

    Article  Google Scholar 

  20. Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans. Power Appar. Syst. PAS-103(10), 2864–2880 (1984)

    Article  Google Scholar 

  21. Der Chen, S., Chen, J.F.: A new algorithm based on the Newton-Raphson approach for real-time emission dispatch. Electr. Power Syst. Res. 40(2), 137–141 (1997)

    Article  Google Scholar 

  22. Pagnetti, A., Ezzaki, M., Anqouda, I.: Impact of wind power production in a European optimal power flow. Electr. Power Syst. Res. 152(2017), 284–294 (2017)

    Article  Google Scholar 

  23. Biswas, P.P., Suganthan, P.N., Amaratunga, G.A.J.: Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 148, 1194–1207 (2017)

    Article  Google Scholar 

  24. Ponnambalam, K., Quintana, V.H., Vannelli, A.: A fast algorithm for power system optimization problems using an interior point method, pp. 393–400 (1992)

    Google Scholar 

  25. Momoh, J.A., Austin, R.F., Adapa, R., Ogbuobiri, E.C.: Application of interior point method to economic dispatch. In: Conference Proceedings of the - IEEE International Conference System Man, and Cybernetics, pp. 1096–1101 (1992)

    Google Scholar 

  26. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  27. Shilaja, C., Arunprasath, T.: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power. Futur. Gener. Comput. Syst. 98, 708–715 (2019)

    Article  Google Scholar 

  28. Elattar, E.E., ElSayed, S.K.: Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement. Energy 178, 598–609 (2019)

    Article  Google Scholar 

  29. Shilaja, C., Ravi, K.: optimal power flow using hybrid DA-APSO algorithm in renewable energy resources. Energy Procedia 117, 1085–1092 (2017)

    Article  Google Scholar 

  30. Ullah, Z., Wang, S., Radosavljevic, J., Lai, J.: A solution to the optimal power flow problem considering WT and PV generation. IEEE Access 7, 46763–46772 (2019)

    Article  Google Scholar 

  31. Bai, W., Eke, I., Lee, K.Y.: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng. Pract. 61, 163–172 (2017)

    Article  Google Scholar 

  32. Mohamed, A.A.A., Mohamed, Y.S., El-Gaafary, A.A.M., Hemeida, A.M.: Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017)

    Article  Google Scholar 

  33. Mahdad, B., Srairi, K.: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl. Soft Comput. J. 46, 501–522 (2016)

    Article  Google Scholar 

  34. Surender Reddy, S., Srinivasa Rathnam, C.: Optimal power flow using glowworm swarm optimization. Int. J. Electr. Power Energy Syst. 80, 128–139 (2016)

    Article  Google Scholar 

  35. Jadhav, H.T., Bamane, P.D.: Temperature dependent optimal power flow using g-best guided artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 77, 77–90 (2016)

    Article  Google Scholar 

  36. Mukherjee, A., Mukherjee, V.: Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm. Int. J. Electr. Power Energy Syst. 78, 700–714 (2016)

    Article  Google Scholar 

  37. Mukherjee, A., Mukherjee, V.: Solution of optimal power flow using chaotic krill herd algorithm. Chaos, Solitons Fractals 78, 10–21 (2015)

    Article  MathSciNet  Google Scholar 

  38. Tan, Y., et al.: Improved group search optimization method for optimal power flow problem considering valve-point loading effects. Neurocomputing 148, 229–239 (2015)

    Article  Google Scholar 

  39. Ayan, K., Kiliç, U., Barakli, B.: Chaotic artificial bee colony algorithm based solution of security and transient stability constrained optimal power flow. Int. J. Electr. Power Energy Syst. 64, 136–147 (2015)

    Article  Google Scholar 

  40. Ebeed, M., Kamel, S., Youssef, H.: Optimal setting of STATCOM based on voltage stability improvement and power loss minimization using Moth-Flame algorithm. In: 2016 18th International Middle-East Power Systems Conference MEPCON 2016 - Proceedings, pp. 815–820 (2017)

    Google Scholar 

  41. Basu, M.: Group search optimization for solution of different optimal power flow problems. Electr. Power Compon. Syst. 44(6), 606–615 (2016)

    Article  Google Scholar 

  42. El-Fergany, A.A., Hasanien, H.M.: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr. Power Compon. Syst. 43(13), 1548–1559 (2015)

    Article  Google Scholar 

  43. Trivedi, I.N., Jangir, P., Parmar, S.A., Jangir, N.: Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer. Neural Comput. Appl. 30(6), 1889–1904 (2018)

    Article  Google Scholar 

  44. Pulluri, H., Naresh, R., Sharma, V.: A solution network based on stud krill herd algorithm for optimal power flow problems. Soft. Comput. 22(1), 159–176 (2018)

    Article  Google Scholar 

  45. Barocio, E., Regalado, J., Cuevas, E., Uribe, F., Zúñiga, P., Torres, P.J.R.: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem. IET Gener. Transm. Distrib. 11(4), 1012–1022 (2017)

    Article  Google Scholar 

  46. Kahourzade, S., Mahmoudi, A., Bin Mokhlis, H.: A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm. Electr. Eng. 97(1), 1–12 (2014)

    Article  Google Scholar 

  47. Ramesh Kumar, A., Premalatha, L.: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. Int. J. Electr. Power Energy Syst. 73, 393–399 (2015)

    Article  Google Scholar 

  48. Bouchekara, H.R.E.H., Abido, M.A., Chaib, A.E., Mehasni, R.: Optimal power flow using the league championship algorithm: a case study of the Algerian power system. Energy Convers. Manag. 87, 58–70 (2014)

    Article  Google Scholar 

  49. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., Massrur, H.R., Gharibzadeh, M.: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study. Inf. Sci. (Ny) 281, 225–247 (2014)

    Article  MathSciNet  Google Scholar 

  50. Bouchekara, H.R.E.H., Abido, M.A., Boucherma, M.: Optimal power flow using Teaching-Learning-Based Optimization technique. Electr. Power Syst. Res. 114, 49–59 (2014)

    Article  Google Scholar 

  51. Mandal, B., Kumar Roy, P.: Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization. Appl. Soft Comput. J. 21, 590–606 (2014)

    Google Scholar 

  52. Duman, S.: Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Comput. Appl. 28(11), 3571–3585 (2017)

    Article  Google Scholar 

  53. Ghasemi, M., Ghavidel, S., Gitizadeh, M., Akbari, E.: An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow. Int. J. Electr. Power Energy Syst. 65, 375–384 (2015)

    Article  Google Scholar 

  54. Bouchekara, H.R.E.H., Chaib, A.E., Abido, M.A., El-Sehiemy, R.A.: Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl. Soft Comput. J. 42, 119–131 (2016)

    Article  Google Scholar 

  55. Bhowmik, A.R., Chakraborty, A.K.: Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm. Int. J. Electr. Power Energy Syst. 64, 1237–1250 (2015)

    Article  Google Scholar 

  56. Pulluri, H., Naresh, R., Sharma, V.: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow. Appl. Soft Comput. J. 54, 229–245 (2017)

    Article  Google Scholar 

  57. Yuan, X., et al.: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy 122, 70–82 (2017)

    Article  Google Scholar 

  58. Chaib, A.E., Bouchekara, H.R.E.H., Mehasni, R., Abido, M.A.: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int. J. Electr. Power Energy Syst. 81, 64–77 (2016)

    Article  Google Scholar 

  59. Zhang, J., Tang, Q., Li, P., Deng, D., Chen, Y.: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl. Soft Comput. J. 47, 494–514 (2016)

    Article  Google Scholar 

  60. Abaci, K., Yamacli, V.: Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 79, 1–10 (2016)

    Article  Google Scholar 

  61. Kılıç, U.: Backtracking search algorithm-based optimal power flow with valve point effect and prohibited zones. Electr. Eng. 97(2), 101–110 (2015)

    Article  Google Scholar 

  62. Surender Reddy, S., Bijwe, P.R.: Differential evolution-based efficient multi-objective optimal power flow. Neural Comput. Appl. 31, 509–522 (2019)

    Article  Google Scholar 

  63. Shaheen, A.M., El-Sehiemy, R.A., Farrag, S.M.: Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gener. Transm. Distrib. 10(7), 1634–1647 (2016)

    Article  Google Scholar 

  64. Pandiarajan, K., Babulal, C.K.: Fuzzy harmony search algorithm based optimal power flow for power system security enhancement. Int. J. Electr. Power Energy Syst. 78, 72–79 (2016)

    Article  Google Scholar 

  65. Singh, R.P., Mukherjee, V., Ghoshal, S.P.: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem. Appl. Soft Comput. J. 40, 161–177 (2016)

    Article  Google Scholar 

  66. Yuan, X., Wang, P., Yuan, Y., Huang, Y., Zhang, X.: A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem. Energy Convers. Manag. 100, 1–9 (2015)

    Article  Google Scholar 

  67. Gacem, A., Benattous, D.: Hybrid genetic algorithm and particle swarm for optimal power flow with non-smooth fuel cost functions. Int. J. Syst. Assur. Eng. Manag. 8(January), 146–153 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology for providing the essential facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ullah, Z. et al. (2020). A Mini-review: Conventional and Metaheuristic Optimization Methods for the Solution of Optimal Power Flow (OPF) Problem. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_29

Download citation

Publish with us

Policies and ethics