Skip to main content

Advertisement

Log in

Optimal coordination of directional overcurrent relays with non-standard multi-characteristics for power systems transient instability protection

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Maintaining a stable operation of modern power systems, which are heavily loaded and strongly interconnected is a very complex task. This requires an optimal setting and coordination of protective relays considering the transient behavior of power systems. This paper proposes a new formulation of the optimal coordination of directional overcurrent relays (DOCRs) problem, considering power systems' transient stability and intelligent selection of non-standard characteristics. This problem is formulated as a mixed-integer optimization problem, taking into account non-standard relay characteristics and transient stability constraints, where the required power system parameters are calculated using Digsilent Power Factory Software. An enhanced version of a hybrid optimization method called: Hybrid Gravity Search Algorithm and Sequential Quadratic Programming (GSA-SQP), is proposed to solve the problem. The efficiency and performance of the proposed approach are validated on the 9-bus and 39-bus test systems considering various case studies. The obtained results show the efficiency of the proposed formulation to reduce the operating time of DOCRs with coordination and transient stability constraints satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

N-SC:

Non-standard relay characteristic

CCT:

Critical clearing time

DOCR:

Directional overcurrent relay

SC:

Standard relay characteristic

SG:

Synchronous generator

MINLP:

Mixed-integer nonlinear programming

RelayType:

Type of relay characteristics

CTI:

Coordination time interval

OF:

Objective function

MOF:

Modification of objective function

TDS:

Time dial setting

TCC:

Time–current curves

Ip:

Pick-up current of relay

topi :

Operating time of the ith primary relay protection

topj :

Operating time of jth backup protection

K:

Variable decision to control the voltage

SCC:

Short current circuit

PSO:

Particle swarm optimization

GA:

Genetic algorithm

GSA:

Gravitational search algorithm

GSASQP:

Gravitational search algorithm and sequential quadratic programming

PSOGSA:

Hybrid particle swarm optimization and gravity search algorithm

NLP:

Nonlinear programming problem

LP:

Linear-programming

DG:

Distributed generation

References

  1. Sharaf HM, Zeineldin HH, Ibrahim DK, Essam EL (2015) A proposed coordination strategy for meshed distribution systems with DG considering user-defined characteristics of directional inverse time overcurrent relays. Int J Electr Power Energy Syst 65:49–58

    Article  Google Scholar 

  2. Zeineldin HH, Mohamed YA-RI, Khadkikar V, Pandi VR (2013) A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems. IEEE Trans Smart Grid 4(3):1523–1532

    Article  Google Scholar 

  3. Alam MN (2019) Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Trans Ind Inform 15(1):64–73

    Article  Google Scholar 

  4. Zeineldin HH, Sharaf HM, Ibrahim DK, El-Zahab EE-DA (2015) Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays. IEEE Trans Smart Grid 6(1):115–123

    Article  Google Scholar 

  5. Shabani M, Karimi A (2018) A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. Int. Trans. Electr. Energy Syst. 28(5):e2532

    Article  Google Scholar 

  6. El-Fergany AA, Hasanien HM (2017) Optimized settings of directional overcurrent relays in meshed power networks using a stochastic fractal search algorithm. Int. Trans. Electr. Energy Syst. 27(11):e2395

    Article  Google Scholar 

  7. Zare H, Alinejad-Beromi Y, Yaghobi H (2018) Intelligent prediction of out-of-step condition on synchronous generators because of transient instability crisis. Int. Trans. Electr. Energy Syst. 29:e2686

    Article  Google Scholar 

  8. Pertl M, Weckesser T, Rezkalla M, Marinelli M (2018) Transient stability improvement: a review and comparison of conventional and renewable-based techniques for preventive and emergency control. Electr Eng 100(3):1701–1718

    Article  Google Scholar 

  9. Soleymani Aghdam T, Kazemi Karegar H, Zeineldin HH (2019) Optimal coordination of double-inverse overcurrent relays for stable operation of DGs. IEEE Trans Ind Inform 15(1):183–192

    Article  Google Scholar 

  10. Yazdaninejadi A, Nazarpour D, Golshannavaz S (2020) Sustainable electrification in critical infrastructure: Variable characteristics for overcurrent protection considering DG stability. Sustain. Cities Soc. 54:102022

    Article  Google Scholar 

  11. Noghabi AS, Sadeh J, Mashhadi HR (2018) Parameter uncertainty in the optimal coordination of overcurrent relays. Int. Trans. Electr. Energy Syst. 28(7):e2563

    Article  Google Scholar 

  12. Yazdaninejadi A, Nazarpour D, Talavat V (2018) Coordination of mixed distance and directional overcurrent relays: miscoordination elimination by utilizing dual characteristics for DOCRs. Int. Trans. Electr. Energy Syst. 29:e2762

    Article  Google Scholar 

  13. Sharma S, Pushpak S, Chinde V, Dobson I (2018) Sensitivity of transient stability critical clearing time. IEEE Trans Power Syst 33(6):6476–6486

    Article  Google Scholar 

  14. Gokhale SS, Kale VS (2018) On the significance of the plug setting in optimal time coordination of directional overcurrent relays. Int. Trans. Electr. Energy Syst. 28(11):e2615

    Article  Google Scholar 

  15. Zellagui M, Benabid R, Boudour M, Chaghi A (2015) Mixed integer optimization of IDMT overcurrent relays in the presence of wind energy farms using PSO algorithm. Period Polytech Electr Eng Comput Sci 59(1):9–17

    Article  Google Scholar 

  16. Darabi A, Bagheri M, Gharehpetian GB (2020) Highly reliable overcurrent protection scheme for highly meshed power systems. Int. J. Electr. Power Energy Syst. 119:105874

    Article  Google Scholar 

  17. Mosavi SMA, Kejani TA, Javadi H (2016) Optimal setting of directional overcurrent relays in distribution networks considering transient stability. Int Trans Electr Energy Syst 26(1):122–133

    Article  Google Scholar 

  18. Yazdaninejadi A, Nazarpour D, Talavat V (2019) Optimal coordination of dual-setting directional over-current relays in multi-source meshed active distribution networks considering transient stability. IET Gener Transm Distrib 13(2):157–170

    Article  Google Scholar 

  19. Momesso AE, Bernardes WM, Asada EN (2020) Adaptive directional overcurrent protection considering stability constraint. Electr. Power Syst. Res. 181:106190

    Article  Google Scholar 

  20. Srivastava A, Tripathi JM, Mohanty SR, Panda B (2016) Optimal over-current relay coordination with distributed generation using hybrid particle swarm optimization-gravitational search algorithm. Electr Power Compon Syst 44(5):506–517

    Article  Google Scholar 

  21. Yinhong L, Dongyuan S, Xianzhong D (2001) An integrated power system relay coordination software. In: 2001 2001 Power Engineering Society Summer Meeting, Conference Proceedings Cat No01CH37262, 3:1315–1318

  22. Adelnia F, Moravej Z, Farzinfar M (2015) A new formulation for coordination of directional overcurrent relays in interconnected networks. Int Trans Electr Energy Syst 25(1):120–137

    Article  Google Scholar 

  23. Razavi F, Abyaneh HA, Al-Dabbagh M, Mohammadi R, Torkaman H (2008) A new comprehensive genetic algorithm method for optimal overcurrent relays coordination. Electr Power Syst Res 78(4):713–720

    Article  Google Scholar 

  24. Urdaneta AJ, Perez LG, Restrepo H (1997) Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology. IEEE Trans Power Deliv 12(4):1458–1464

    Article  Google Scholar 

  25. Chattopadhyay B, Sachdev MS, Sidhu TS (1996) An online relay coordination algorithm for adaptive protection using linear programming technique. IEEE Trans Power Deliv 11(1):165–173

    Article  Google Scholar 

  26. Zeineldin HH, El-Saadany EF, Salama MMA (2006) Optimal coordination of overcurrent relays using a modified particle swarm optimization. Electr Power Syst Res 76(11):988–995

    Article  Google Scholar 

  27. Solati Alkaran D, Vatani MR, Sanjari MJ, Gharehpetian GB, Naderi MS (2018) Optimal overcurrent relay coordination in interconnected networks by using fuzzy-based GA method. IEEE Trans Smart Grid 9(4):3091–3101

    Article  Google Scholar 

  28. So CW, Li KK (2000) Time coordination method for power system protection by an evolutionary algorithm. IEEE Trans Ind Appl 36(5):1235–1240

    Article  Google Scholar 

  29. Pandi VR, Zeineldin HH, Xiao W (2013) Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits. IEEE Trans Power Syst 28(2):1245–1254

    Article  Google Scholar 

  30. Radosavljević J, Jevtić M (2016) Hybrid GSA-SQP algorithm for optimal coordination of directional overcurrent relays. IET Gener Transm Distrib 10(8):1928–1937

    Article  Google Scholar 

  31. Lalitha RH, Manoranjitham GE, Weslin D, Senthilselvi A (2021) Multi-objective approach for the protection of microgrids using surrogate assisted particle swarm optimization (SAPSO). Appl Nanosci

  32. Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N (2021) Optimal coordination of over-current relays in microgrids considering multiple characteristic curves. Alex Eng J 60(2):2093–2113

    Article  Google Scholar 

  33. Kiliçkiran HC, Şengör İ, Akdemir H, Kekezoğlu B, Erdinç O, Paterakis NG (2018) Power system protection with digital overcurrent relays: A review of non-standard characteristics. Electr Power Syst Res 164:89–102

    Article  Google Scholar 

  34. Keil T, Jager J (2008) Advanced coordination method for overcurrent protection relays using nonstandard tripping characteristics. IEEE Trans Power Deliv 23(1):52–57

    Article  Google Scholar 

  35. Saleh KA, Zeineldin HH, Al-Hinai A, El-Saadany EF (2015) Optimal coordination of directional overcurrent relay using a new time–current–voltage characteristic. IEEE Trans Power Deliv 30(2):537–544

    Article  Google Scholar 

  36. Darabi A, Bagheri M, Gharehpetian GB (2020) Highly sensitive microgrid protection using overcurrent relays with a novel relay characteristic. IET Renew Power Gener 14(7):1201–1209

    Article  Google Scholar 

  37. Dadfar S, Gandomkar M (2021) Augmenting protection coordination index in interconnected distribution electrical grids: Optimal dual characteristic using numerical relays. Int J Electr Power Energy Syst 131:107107

    Article  Google Scholar 

  38. Hong L, Rizwan M, Wasif M, Ahmad S, Zaindin M, Firdausi M (2021) User-defined dual setting directional overcurrent relays with hybrid time current-voltage characteristics-based protection coordination for active distribution network. IEEE Access 9:62752–62769

    Article  Google Scholar 

  39. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  40. Wang M, Qiu C (2020) A multiobjective optimization-based calculation framework of maximum wind power penetration limit considering system transient stability. Int Trans Electr Energy Syst 30(8):e12465

    Article  Google Scholar 

  41. Machowski J, Machowski J, Bialek JW, Bumby JR (2008) Power system dynamics: stability and control. Wiley, Chichester

    Google Scholar 

  42. Chandrashekhar PK, Srivani SG (2015) A hybrid method for Critical Clearing Time evaluation of multi-machine systems. In: 2015 IEEE international conference on electrical, computer and communication technologies (ICECCT), pp 1–7

  43. TC/SC 95 I (2007) IEC 60255-3 Ed. 2.0 b:1989, Electrical relays - Part 3: single input energizing quantity measuring relays with dependent or independent time, Multiple. Distributed through American National Standards Institute.

  44. Elsadd MA, Kawady TA, Taalab A-MI, Elkalashy NI (2021) Adaptive optimum coordination of overcurrent relays for deregulated distribution systems considering parallel feeders. Electr Eng 103(3):1849–1867

    Article  Google Scholar 

  45. Radosavljevic J (2018) Metaheuristic optimization in power engineering. IET Digital Library

  46. Bedekar PP, Bhide SR (2011) Optimum coordination of directional overcurrent relay using the hybrid GA-NLP approach. IEEE Trans Power Deliv 26(1):109–119

    Article  Google Scholar 

  47. Power factory, 2021, Digsilent power Factory version 2021, Germany

Download references

Acknowledgements

This research was supported by the DGRSDT. A special thanks to Digsilent Power Factory for providing us a thesis license of the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Assouak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assouak, A., Benabid, R. & Ladjici, A.A. Optimal coordination of directional overcurrent relays with non-standard multi-characteristics for power systems transient instability protection. Electr Eng 104, 3697–3715 (2022). https://doi.org/10.1007/s00202-022-01554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01554-z

Keywords

Navigation