Skip to main content
Log in

Precise PI speed control of permanent magnet synchronous motor with a simple learning feedforward compensation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper develops a precise proportional–integral (PI) type control system for repeatable tracking control of a permanent magnet synchronous motor (PMSM) under motor parameter and load torque variations. By adding a very simple learning feedforward term, a conventional PI control system can be enforced to have a perfect tracking performance under model parameter and load torque variations. The convergence and stability of the closed-loop control system response are analytically shown. Finally, the simulation and experimental results are given to verify the effectiveness of the proposed PI-type learning control law under the uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kshirsagar P, Burgos RP, Jang J, Lidozzit A, Wang F, Boroyevich D, Sul SK (2012) Implementation and sensorless vector-control design and tuning strategy for SMPM machines in fan-type applications. IEEE Trans Ind Appl 48(6):2402–2413

    Article  Google Scholar 

  2. Preindl M, Bolognani S (2013) Model predictive direct torque control with finite control set for PMSM drive systems, Part 1: maximum torque per ampere operation. IEEE Trans Ind Inf 9(4):1912–1921

    Article  Google Scholar 

  3. Preindl M, Bolognani S (2013) Model predictive direct torque control with finite control set for PMSM drive systems, Part 2: field weakening operation. IEEE Trans Ind Inf 9(2):648–657

    Article  Google Scholar 

  4. Preindl M, Bolognani S (2013) Model predictive direct torque control with finite control set for PMSM drive systems. IEEE Trans Power Electr 28(2):1007–1015

    Article  Google Scholar 

  5. Li S, Zhou M, Yu X (2013) Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inf 9(4):1879–1891

    Article  Google Scholar 

  6. Jezernik K, Horvat R, Curkovic M (2013) A switching control strategy for the reduction of torque ripple for PMSM. IEEE Trans Ind Inf 9(3):1272–1279

    Article  Google Scholar 

  7. Liu G, Chen L, Zhao W, Jiang Y, Qu L (2013) Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse. IEEE Trans Ind Inf 9(2):890–898

    Article  Google Scholar 

  8. Dang DQ, Rafaq MS, Choi HH, Jung JW (2016) Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives. IEEE Trans Ind Electr 63(3):1438–1449

    Article  Google Scholar 

  9. Jung JW, Leu VQ, Do TD, Kim EK, Choi HH (2015) Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Trans Power Electr 30(2):900–908

    Article  Google Scholar 

  10. Choi YS, Choi HH, Jung JW (2016) Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives. IEEE Trans Power Electr 31(5):3728–3737

    Article  Google Scholar 

  11. Do TD, Choi HH, Jung JW (2015) Nonlinear optimal DTC design and stability analysis for interior permanent magnet synchronous motor drives. IEEE Trans Mechatron 20(6):2716–2725

    Article  Google Scholar 

  12. Do TD, Kwak S, Choi HH, Jung JW (2014) Suboptimal control scheme design for interior permanent-magnet synchronous motors: An SDRE-based approach. IEEE Trans Power Electr 29(6):3020–3031

    Article  Google Scholar 

  13. Jung JW, Choi YS, Leu VQ, Choi HH (2011) Fuzzy PI-type current controllers for permanent magnet synchronous motors. IET Electr Power Appl 5(1):143–152

    Article  Google Scholar 

  14. Choi HH, Vu NTT, Jung JW (2012) Design and implementation of a Takagi-Sugeno fuzzy speed regulator for a permanent magnet synchronous motor. IEEE Trans Ind Electr 59(8):3069–3077

    Article  Google Scholar 

  15. Kung YS, Huang CC, Tsai MH (2009) FPGA realization of an adaptive fuzzy controller for PMLSM drive. IEEE Trans Ind Electr 56(8):2923–2932

    Article  Google Scholar 

  16. Li S, Gu H (2012) Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Trans Ind Inf 8(4):767–779

    Article  Google Scholar 

  17. El-Sousy FFM (2013) Intelligent optimal recurrent wavelet Elman neural network control system for permanent magnet synchronous motor servo drive. IEEE Trans Ind Inf 9(4):1986–2003

    Article  Google Scholar 

  18. Morawiec M (2013) The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter. IEEE Trans Ind Inf 9(2):1047–1055

    Article  Google Scholar 

  19. Liu TH, Pu HT, Lin CK (2010) Implementation of an adaptive position control system of a permanent magnet synchronous motor and its application. IET Electr Power Appl 4(2):121–130

    Article  Google Scholar 

  20. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall Inc., New Jersey

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2014R1A2A1A11049543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H.H., Kim, E.K., Yu, D.Y. et al. Precise PI speed control of permanent magnet synchronous motor with a simple learning feedforward compensation. Electr Eng 99, 133–139 (2017). https://doi.org/10.1007/s00202-016-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0407-0

Keywords

Navigation