Skip to main content
Log in

Association of bone fracture with 30-year body mass index (BMI) trajectories: findings from the Framingham Heart Study

Bone fracture and 30-year BMI trajectories

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

A knowledge gap exists in associating later life’s osteoporotic fracture and middle adulthood’s BMI trajectories. We observed an association showing those transitioning from overweight to normal weight face a higher fracture risk in late adulthood, emphasizing the potential benefits of maintaining a stable BMI to reduce late-life fractures.

Purpose

Numerous studies on the relationship between obesity and fractures have relied on body mass index (BMI) at a single time point, yielding inconclusive results. This study investigated the association of BMI trajectories over middle adulthood with fracture risk in late adulthood.

Methods

This prospective cohort study analyzed 1772 qualified participants from the Framingham Original Cohort Study, with 292 (16.5%) incident fractures during an average of 17.1-year follow-up. We constructed BMI trajectories of age 35–64 years based on latent class mixed modeling and explored their association with the risk of fracture after 65 years using the Cox regression.

Results

The result showed that compared to the BMI trajectory Group 4 (normal to slightly overweight; see “Methods” for detailed description), Group 1 (overweight declined to normal weight) had a higher all-fracture risk after age 65 (hazard ratio [HR], 2.22, 95% CI, 1.13–4.39). The secondary analysis focusing on lower extremity fractures (pelvis, hip, leg, and foot) showed a similar association pattern.

Conclusions

This study suggested that people whose BMI slightly increased from normal weight to low-level overweight during 30 years of middle adulthood confer a significantly lower risk of fracture in later life than those whose BMI declined from overweight to normal weight. This result implies the potentially beneficial effects of avoiding weight loss to normal weight during middle adulthood for overweight persons, with reduced fracture risk in late life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  PubMed  Google Scholar 

  2. Gonnelli S, Caffarelli C, Nuti R (2014) Obesity and fracture risk. Clin Cases Miner Bone Metab 11(1):9–14

    PubMed  PubMed Central  Google Scholar 

  3. Kim J, Lee S, Kim SS et al (2021) Association between body mass index and fragility fracture in postmenopausal women: a cross-sectional study using Korean National Health and Nutrition Examination Survey 2008–2009 (KNHANES IV). BMC Womens Health 21(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lespessailles É (2021) Obesity and osteoporosis. Rev Prat 71(1):91–94

    PubMed  Google Scholar 

  5. Liu Y, Liu C, Guo D, Wang N, Zhao Y, Li D (2021) Effect of childhood overweight on distal metaphyseal radius fractures treated by closed reduction. J Orthop Surg Res 16(1):182

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nhan DT, Leet AI, Lee RJ (2021) Associations of childhood overweight and obesity with upper-extremity fracture characteristics. Medicine (Baltimore) 100(18):e25302

    Article  CAS  PubMed  Google Scholar 

  7. Owattanapanich N, Schellenberg M, Switzer E, Clark DH, Matsushima K, Inaba K (2021) Association of body mass index on injuries and outcomes after ground-level falls. Am Surg 87(10):1584–1588

    Article  PubMed  Google Scholar 

  8. Sampaio LG, Marques J, Petterle RR, Moreira CA, Borba VZC (2021) Association between fractures and traditional risk factors for osteoporosis and low bone mineral density in patients with obesity. Arch Endocrinol Metab 65:152–163

    PubMed  PubMed Central  Google Scholar 

  9. Sherk VD, Heveran CM, Foright RM, Johnson GC, Presby DM, Ferguson VL et al (2021) Sex differences in the effect of diet, obesity, and exercise on bone quality and fracture toughness. Bone 145:115840

    Article  CAS  PubMed  Google Scholar 

  10. Turcotte AF, O’Connor S, Morin SN et al (2021) Association between obesity and risk of fracture, bone mineral density and bone quality in adults: a systematic review and meta-analysis. PLoS ONE 16(6):e0252487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Z, Zhou X, Shu L, Hu M, Gao R, Zhou XH (2021) The association between overweight/obesity and vertebral fractures in older adults: a meta-analysis of observational studies. Osteoporos Int 32(6):1079–1091

    Article  CAS  PubMed  Google Scholar 

  12. Liu CT, Broe KE, Zhou Y et al (2017) Visceral adipose tissue is associated with bone microarchitecture in the Framingham Osteoporosis Study. J Bone Miner Res 32(1):143–150

    Article  CAS  PubMed  Google Scholar 

  13. Liu CT, Sahni S, Xu H et al (2018) Long-term and recent weight change are associated with reduced peripheral bone density, deficits in bone microarchitecture, and decreased bone strength: the Framingham Osteoporosis Study. J Bone Miner Res 33(10):1851–1858

    Article  CAS  PubMed  Google Scholar 

  14. Nielson CM, Marshall LM, Adams AL et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502

    Article  PubMed  Google Scholar 

  15. De Laet C, Kanis JA, Odén A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16(11):1330–1338

    Article  PubMed  Google Scholar 

  16. Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27(1):1–10

    Article  PubMed  Google Scholar 

  17. Chan MY, Frost SA, Center JR, Eisman JA, Nguyen TV (2014) Relationship between body mass index and fracture risk is mediated by bone mineral density. J Bone Miner Res 29(11):2327–2335

    Article  PubMed  Google Scholar 

  18. Johansson H, Kanis JA, Odén A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29(1):223–233

    Article  PubMed  Google Scholar 

  19. Shen J, Leslie WD, Nielson CM, Majumdar SR, Morin SN, Orwoll ES (2016) Associations of body mass index with incident fractures and hip structural parameters in a large Canadian cohort. J Clin Endocrinol Metab 101(2):476–484

    Article  CAS  PubMed  Google Scholar 

  20. Xu H, Cupples LA, Stokes A, Liu CT (2018) Association of obesity with mortality over 24 years of weight history: findings from the Framingham Heart Study. JAMA Netw Open 1(7):e184587

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stokes A, Preston SH (2016) Revealing the burden of obesity using weight histories. Proc Natl Acad Sci USA 113(3):572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malhotra R, Ostbye T, Riley CM, Finkelstein EA (2013) Young adult weight trajectories through midlife by body mass category. Obesity (Silver Spring) 21(9):1923–1934

    Article  PubMed  Google Scholar 

  23. Guo A, Beheshti R, Khan YM, Langabeer JR, Foraker RE (2021) Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models. BMC Med Inform Decis Mak 21(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng H, Echave P, Mehta N, Myrskylä M (2021) Life-long body mass index trajectories and mortality in two generations. Ann Epidemiol 56:18–25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng H, Tumin D, Qian Z (2013) Obesity and mortality risk: new findings from body mass index trajectories. Am J Epidemiol 178(11):1591–1599

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abdullah A, Wolfe R, Stoelwinder JU et al (2011) The number of years lived with obesity and the risk of all-cause and cause-specific mortality. Int J Epidemiol 40(4):985–996

    Article  PubMed  Google Scholar 

  27. Abdullah A, Stoelwinder J, Shortreed S et al (2011) The duration of obesity and the risk of type 2 diabetes. Public Health Nutr 14(1):119–126

    Article  PubMed  Google Scholar 

  28. Ensrud KE, Ewing SK, Stone KL et al (2003) Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 51(12):1740–1747

    Article  PubMed  Google Scholar 

  29. LeBlanc ES, Rizzo JH, Pedula KL et al (2018) Long-term weight trajectory and risk of hip fracture, falls, impaired physical function, and death. J Am Geriatr Soc 66(10):1972–1979

    Article  PubMed  PubMed Central  Google Scholar 

  30. Søgaard AJ, Meyer HE, Tonstad S, Håheim LL, Holme I (2008) Weight cycling and risk of forearm fractures: a 28-year follow-up of men in the Oslo Study. Am J Epidemiol 167(8):1005–1013

    Article  PubMed  Google Scholar 

  31. Meyer HE, Tverdal A, Selmer R (1998) Weight variability, weight change and the incidence of hip fracture: a prospective study of 39,000 middle-aged Norwegians. Osteoporos Int 8(4):373–378

    Article  CAS  PubMed  Google Scholar 

  32. Lv QB, Fu X, Jin HM et al (2015) The relationship between weight change and risk of hip fracture: meta-analysis of prospective studies. Sci Rep 5:16030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson KC, Bray GA, Cheskin LJ et al (2017) The effect of intentional weight loss on fracture risk in persons with diabetes: results from the look AHEAD randomized clinical trial. J Bone Miner Res 32(11):2278–2287

    Article  PubMed  Google Scholar 

  34. Crandall CJ, Yildiz VO, Wactawski-Wende J et al (2015) Postmenopausal weight change and incidence of fracture: post hoc findings from Women’s Health Initiative Observational Study and Clinical Trials. BMJ 350:h25

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beavers KM, Neiberg RH, Johnson KC et al (2019) Impact of body weight dynamics following intentional weight loss on fracture risk: results from the Action for Health in Diabetes Study. JBMR Plus 3(5):e10086

    Article  PubMed  Google Scholar 

  36. Medley ML (1980) Life satisfaction across four stages of adult life. Int J Aging Hum Dev 11(3):193–209

    Article  CAS  PubMed  Google Scholar 

  37. Dawber TR, Meadors GF, Moore FE (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health 41(3):279–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary (1998) Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am J Clin Nutr 68(4):899–917

    Article  Google Scholar 

  39. nzcoops (2011) Latent class mixed models – with graphics. R-bloggers [Internet] https://www.r-bloggers.com/2011/10/latent-class-mixed-models-with-graphics/

  40. Proust-Lima C (2017) Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J Stat Softw 78(2):56

    Article  Google Scholar 

  41. Proust-Lima C, Philipps V, Diakite A, Liquet B (2021) Extended mixed models using latent classes and latent processes. J Stat Softw 10

  42. Morin S, Tsang JF, Leslie WD (2009) Weight and body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteoporos Int 20(3):363–370

    Article  CAS  PubMed  Google Scholar 

  43. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19(5):595–606

    Article  CAS  PubMed  Google Scholar 

  44. Shapses SA, Riedt CS (2006) Bone, body weight, and weight reduction: what are the concerns? J Nutr 136(6):1453–1456

    Article  CAS  PubMed  Google Scholar 

  45. Wardlaw GM (1996) Putting body weight and osteoporosis into perspective. Am J Clin Nutr 63(3 Suppl):433S-S436

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is in part supported by the following grants: NIH R01DK122503, R01AG065299, and R01 AR041398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Ti Liu.

Ethics declarations

Conflicts of interest

Douglas P. Kiel has received research grants from Amgen and Solarea Bio. He serves on a DSMB for Agnovos, and on scientific advisory boards for Pfizer, Amgen, Reneo, and Solarea Bio. He has received royalties for publication by Wolters-Kluwer for UpToDate. Zihao Xin, Hanfei Xu, Xiaoyu Zhang, Elizabeth J. Samelson, and Ching-Ti Liu declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 312 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Z., Xu, H., Zhang, X. et al. Association of bone fracture with 30-year body mass index (BMI) trajectories: findings from the Framingham Heart Study. Osteoporos Int (2024). https://doi.org/10.1007/s00198-024-07068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00198-024-07068-7

Keywords

Navigation