Skip to main content

Advertisement

Log in

Systematic review and meta-analysis of the association between dairy consumption and the risk of hip fracture: critical interpretation of the currently available evidence

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In the present meta-analysis, reductions in the risk of hip fracture with milk consumption were only observed among American adults, but not among Scandinavian adults, possibly because milk products are more commonly fortified with vitamin D in the former population than in Scandinavian countries. The reduction in the risk of hip fracture was also observed with yogurt consumption, which is often associated with healthy lifestyles and dietary patterns that contribute to improved bone health.

Introduction

Although dairy products contain bone-beneficial nutrients, the association between dairy consumption and the risk of hip fracture remains equivocal. Fueling this uncertainty, the elevated risk of hip fracture in association with milk consumption was observed in a cohort of Swedish women. A systematic review and meta-analysis of prospective cohort studies was performed to critically evaluate the association, or lack thereof, between dairy consumption (milk, yogurt, and cheese) and the risk of hip fracture.

Methods

A random effects model was used to generate the summary relative risks (RRs) with their 95% confidence intervals (CIs) for the associations of interest.

Results

In the meta-analysis of the highest versus lowest category of consumption, higher consumption of yogurt (RR 0.78, 95% CI 0.68, 0.90), but not milk (RR 0.86, 95% CI 0.73, 1.02) or cheese (RR 0.85, 95% CI 0.66, 1.08), was associated with a lower risk of hip fracture. For milk, the reduced risk of fracture with higher milk consumption was observed in the USA (RR 0.75, 95% CI 0.65, 0.87), but not in Scandinavian countries (RR 1.00, 95% CI 0.85, 1.17). These findings were further supported by the fact that American studies (RR 0.93, 95% CI 0.88, 0.98; per 1 glass/day), but not Scandinavian studies (RR 1.01, 95% CI 0.95, 1.07; per 1 glass/day), demonstrated a linear association between milk consumption and the risk of hip fracture.

Conclusions

The cumulative evidence from prospective cohort studies reassuringly suggests that the risk of hip fracture may not be elevated among people who consume milk, yogurt, and cheese, and that a greater consumption of milk or yogurt may even be associated with a lower risk of hip fracture depending on the factors that may differ across the population of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Commission Regulation (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:EN:PDF. Accessed 20 Dec 2019

  2. Burrow K, Young W, McConnell M, Carne A, Bekhit AE (2018) Do dairy minerals have a positive effect on bone health? Compr Rev Food Sci F 17:989–1005

    Article  Google Scholar 

  3. Hess JM, Jonnalagadda SS, Slavin JL (2018) Dairy foods: current evidence of their effects on bone, cardiometabolic, cognitive, and digestive health. Compr Rev Food Sci F 17:251–268

    Google Scholar 

  4. Schmid A, Walther B (2013) Natural vitamin D content in animal products. Adv Nutr 4:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Itkonen ST, Erkkola M, Lamberg-Allardt CJE (2018) Vitamin D fortification of fluid milk products and their contribution to vitamin D intake and vitamin D status in observational studies-a review. Nutrients 10:E1054

    Article  PubMed  CAS  Google Scholar 

  6. Rizzoli R (2014) Dairy products, yogurts, and bone health. Am J Clin Nutr 99:1256S–1262S

    Article  CAS  PubMed  Google Scholar 

  7. Rozenberg S, Body JJ, Bruyère O, Bergmann P, Brandi ML, Cooper C, Devogelaer JP, Gielen E, Goemaere S, Kaufman JM, Rizzoli R, Reginster JY (2016) Effects of dairy products consumption on health: benefits and beliefs--a commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif Tissue Int 98:1–17

    Article  CAS  PubMed  Google Scholar 

  8. Geiker NRW, Mølgaard C, Iuliano S et al (2019) Impact of whole dairy matrix on musculoskeletal health and aging-current knowledge and research gaps. Osteoporos Int 31(4):601-615

  9. van den Heuvel EGHM, Steijns JMJM (2018) Dairy products and bone health: how strong is the scientific evidence? Nutr Res Rev 31:164–178

    Article  PubMed  CAS  Google Scholar 

  10. Kouvelioti R, Josse AR, Klentrou P (2017) Effects of dairy consumption on body composition and bone properties in youth: a systematic review. Curr Dev Nutr 1:e001214

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanis JA, Johansson H, Oden A, de Laet C, Johnell O, Eisman JA, Mc Closkey E, Mellstrom D, Pols H, Reeve J, Silman A, Tenenhouse A (2005) A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 16:799–804

    Article  PubMed  Google Scholar 

  12. Feart C, Lorrain S, Ginder Coupez V et al. (2013) Adherence to a Mediterranean diet and risk of fractures in French older persons. Osteoporos Int 24:3031–3041

    Article  CAS  PubMed  Google Scholar 

  13. Owusu W, Willett WC, Feskanich D et al. (1997) Calcium intake and the incidence of forearm and hip fractures among men. J Nutr 127:1782–1787

    Article  CAS  PubMed  Google Scholar 

  14. Feskanich D, Willett WC, Colditz GA (2003) Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr 77:504–511

    Article  CAS  PubMed  Google Scholar 

  15. Feskanich D, Bischoff-Ferrari HA, Frazier AL, Willett WC (2014) Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr 168:54–60

    Article  PubMed  PubMed Central  Google Scholar 

  16. Michaëlsson K, Melhus H, Bellocco R, Wolk A (2003) Dietary calcium and vitamin D intake in relation to osteoporotic fracture risk. Bone 32:694–703

    Article  PubMed  CAS  Google Scholar 

  17. Michaëlsson K, Wolk A, Lemming EW, Melhus H, Byberg L (2018) Intake of milk or fermented milk combined with fruit and vegetable consumption in relation to hip fracture rates: a cohort study of Swedish women. J Bone Miner Res 33:449–457

    Article  PubMed  CAS  Google Scholar 

  18. Cumming RG, Cummings SR, Nevitt MC, Scott J, Ensrud KE, Vogt TM, Fox K (1997) Calcium intake and fracture risk: results from the study of osteoporotic fractures. Am J Epidemiol 145:926–934

    Article  CAS  PubMed  Google Scholar 

  19. Fujiwara S, Kasagi F, Yamada M, Kodama K (1997) Risk factors for hip fracture in a Japanese cohort. J Bone Miner Res 12:998–1004

    Article  CAS  PubMed  Google Scholar 

  20. Meyer HE, Pedersen JI, Løken EB, Tverdal A (1997) Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol 145:117–123

    Article  CAS  PubMed  Google Scholar 

  21. Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT (2013) Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham offspring study. Arch Osteoporos 8:119

    Article  PubMed  PubMed Central  Google Scholar 

  22. Michaëlsson K, Wolk A, Langenskiöld S et al (2014) Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ 349:g6015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sahni S, Mangano KM, Tucker KL, Kiel DP, Casey VA, Hannan MT (2014) Protective association of milk intake on the risk of hip fracture: results from the Framingham original cohort. J Bone Miner Res 29:1756–1762

    Article  CAS  PubMed  Google Scholar 

  24. Bergholdt HKM, Larsen MK, Varbo A, Nordestgaard BG, Ellervik C (2018) Lactase persistence, milk intake, hip fracture and bone mineral density: a study of 97 811 Danish individuals and a meta-analysis. J Intern Med 284:254–269

    Article  CAS  PubMed  Google Scholar 

  25. Feskanich D, Meyer HE, Fung TT, Bischoff-Ferrari HA, Willett WC (2018) Milk and other dairy foods and risk of hip fracture in men and women. Osteoporos Int 29:385–396

    Article  CAS  PubMed  Google Scholar 

  26. Holvik K, Meyer HE, Laake I, Feskanich D, Omsland TK, Søgaard AJ (2019) Milk drinking and risk of hip fracture. The Norwegian epidemiologic osteoporosis studies (NOREPOS). Br J Nutr 121:709–718

    Article  CAS  PubMed  Google Scholar 

  27. Bian S, Hu J, Zhang K, Wang Y, Yu M, Ma J (2018) Dairy product consumption and risk of hip fracture: a systematic review and meta-analysis. BMC Public Health 18:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matía-Martín P, Torrego-Ellacuría M, Larrad-Sainz A, Fernández-Pérez C, Cuesta-Triana F, Rubio-Herrera MÁ (2019) Effects of milk and dairy products on the prevention of osteoporosis and osteoporotic fractures in Europeans and non-Hispanic whites from North America: a systematic review and updated meta-analysis. Adv Nutr 10(suppl_2):S120–S143

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malmir H, Larijani B, Esmaillzadeh A (2019) Consumption of milk and dairy products and risk of osteoporosis and hip fracture: a systematic review and meta-analysis. Crit Rev Food Sci Nutr:1–16

  30. Grønborg IM, Tetens I, Ege M, Christensen T, Andersen EW, Andersen R (2019) Modelling of adequate and safe vitamin D intake in Danish women using different fortification and supplementation scenarios to inform fortification policies. Eur J Nutr 58:227–232

    Article  PubMed  CAS  Google Scholar 

  31. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  CAS  PubMed  Google Scholar 

  32. Wells GA, Shea B, O’connell D et al. (2000) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 20 Dec 2019

  33. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  34. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309

    Article  CAS  PubMed  Google Scholar 

  35. Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose-response data. Stata J 6:40–57

    Article  Google Scholar 

  36. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  37. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463

    Article  CAS  PubMed  Google Scholar 

  39. Canadian Dairy Information Centre. DC007 World dairy products consumption. https://www.dairyinfo.gc.ca/index_e.php?s1=dff-fcil&s2=cons&s3=conscdn. Accessed 20 Dec 2019

  40. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244

    Article  PubMed  Google Scholar 

  41. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C, IOF Working Group on Epidemiology and Quality of Life (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kruger MC, Chan YM, Lau LT, Lau CC, Chin YS, Kuhn-Sherlock B, Todd JM, Schollum LM (2018) Calcium and vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year. Eur J Nutr 57:2785–2794

    Article  CAS  PubMed  Google Scholar 

  43. Daly RM, Bass S, Nowson C (2006) Long-term effects of calcium-vitamin-D3-fortified milk on bone geometry and strength in older men. Bone 39:946–953

    Article  CAS  PubMed  Google Scholar 

  44. Reyes-Garcia R, Mendoza N, Palacios S et al (2018) Effects of daily intake of calcium and vitamin D-enriched milk in healthy postmenopausal women: a randomized, controlled, double-blind nutritional study. J Women's Health (Larchmt) 27:561–568

    Article  Google Scholar 

  45. Josse AR, Tang JE, Tarnopolsky MA, Phillips SM (2010) Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc 42:1122–1130

    Article  CAS  PubMed  Google Scholar 

  46. Bonjour JP, Brandolini-Bunlon M, Boirie Y, Morel-Laporte F, Braesco V, Bertière MC, Souberbielle JC (2008) Inhibition of bone turnover by milk intake in postmenopausal women. Br J Nutr 100:866–874

    Article  CAS  PubMed  Google Scholar 

  47. Kruger MC, Booth CL, Coad J, Schollum LM, Kuhn-Sherlock B, Shearer MJ (2006) Effect of calcium fortified milk supplementation with or without vitamin K on biochemical markers of bone turnover in premenopausal women. Nutrition 22:1120–1128

    Article  CAS  PubMed  Google Scholar 

  48. Kruger MC, Schollum LM, Kuhn-Sherlock B, Hestiantoro A, Wijanto P, Li-Yu J, Agdeppa I, Todd JM, Eastell R (2010) The effect of a fortified milk drink on vitamin D status and bone turnover in post-menopausal women from South East Asia. Bone 46:759–767

    Article  CAS  PubMed  Google Scholar 

  49. Kruger MC, Ha PC, Todd JM, Kuhn-Sherlock B, Schollum LM, Ma J, Qin G, Lau E (2012) High-calcium, vitamin D fortified milk is effective in improving bone turnover markers and vitamin D status in healthy postmenopausal Chinese women. Eur J Clin Nutr 66:856–861

    Article  CAS  PubMed  Google Scholar 

  50. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The Swedish Council on Technology Assessment in Health Care. Osteoporosis - Prevention, Diagnosis and Treatment. A Systematic Review. Stockholm, Sweden: 2003. 2 Volumes, 165/1+2

  52. Wu AM, Huang CQ, Lin ZK, Tian NF, Ni WF, Wang XY, Xu HZ, Chi YL (2014) The relationship between vitamin a and risk of fracture: meta-analysis of prospective studies. J Bone Miner Res 29:2032–2039

    Article  CAS  PubMed  Google Scholar 

  53. Barrionuevo P, Kapoor E, Asi N, Alahdab F, Mohammed K, Benkhadra K, Almasri J, Farah W, Sarigianni M, Muthusamy K, al Nofal A, Haydour Q, Wang Z, Murad MH (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630

    Article  PubMed  Google Scholar 

  54. Mangano KM, Noel SE, Sahni S, Tucker KL (2019) Higher dairy intakes are associated with higher bone mineral density among adults with sufficient vitamin D status: results from the Boston Puerto Rican osteoporosis study. J Nutr 149:139–148

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sahni S, Mangano KM, Kiel DP, Tucker KL, Hannan MT (2017) Dairy intake is protective against bone loss in older vitamin D supplement users: the Framingham study. J Nutr 147:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki Y, Maruyama-Nagao A, Sakuraba K, Kawai S (2014) Milk fortified with vitamin D could reduce the prevalence of vitamin D deficiency among Japanese female college students. Arch Osteoporos 9:188

    Article  PubMed  Google Scholar 

  57. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, Cummings SR, Diez-Perez A, Eisman JA, Fujiwara S, Glüer CC, Goltzman D, Hans D, Khaw KT, Krieg MA, Kröger H, LaCroix A, Lau E, Leslie WD, Mellström D, Melton LJ 3rd, O'Neill TW, Pasco JA, Prior JC, Reid DM, Rivadeneira F, van Staa T, Yoshimura N, Zillikens MC (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233

  58. De Laet C, Kanis JA, Odén A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  59. Ishii S, Cauley JA, Greendale GA, Nielsen C, Karvonen-Gutierrez C, Ruppert K, Karlamangla AS (2014) Pleiotropic effects of obesity on fracture risk: the study of women’s health across the nation. J Bone Miner Res 29:2561–2570

    Article  PubMed  Google Scholar 

  60. Li X, Gong X, Jiang W (2017) Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies. Osteoporos Int 28:2747–2757

    Article  CAS  PubMed  Google Scholar 

  61. Kawai M, de Paula FJ, Rosen CJ (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hidayat K, Yang CM, Shi BM (2018) Body fatness at a young age, body fatness gain and risk of breast cancer: systematic review and meta-analysis of cohort studies. Obes Rev 19:254–268

    Article  CAS  PubMed  Google Scholar 

  64. Cauley JA, Danielson ME, Jammy GR, Bauer DC, Jackson R, Wactawski-Wende J, Chlebowski RT, Ensrud KE, Boudreau R (2017) Sex steroid hormones and fracture in a multiethnic cohort of women: the Women’s Health Initiative study (WHI). J Clin Endocrinol Metab 102:1538–1547

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rizzoli R, Biver E (2018) Effects of fermented milk products on bone. Calcif Tissue Int 102:489–500

    Article  CAS  PubMed  Google Scholar 

  66. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73(2 Suppl):374S–379S

    Article  CAS  PubMed  Google Scholar 

  67. McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13:363–371

    Article  PubMed  PubMed Central  Google Scholar 

  68. Whisner CM, Castillo LF (2018) Prebiotics, bone and mineral metabolism. Calcif Tissue Int 102:443–479

    Article  CAS  PubMed  Google Scholar 

  69. Jansson PA, Curiac D, Ahrén IL et al (2019) Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol 1:e154–e162

    Article  Google Scholar 

  70. Nilsson AG, Sundh D, Bäckhed F, Lorentzon M et al (2018) Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med 284:307–317

    Article  CAS  PubMed  Google Scholar 

  71. Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA (2017) Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J Am Coll Nutr 36:497–506

    Article  CAS  PubMed  Google Scholar 

  72. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, Morita H, Nakamura T (2018) Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health 37:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 69:544–548

    Article  PubMed  Google Scholar 

  74. Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87:S187–S191

    Article  CAS  PubMed  Google Scholar 

  75. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476

    Article  CAS  PubMed  Google Scholar 

  76. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL (2007) Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 97:365–372

    Article  CAS  PubMed  Google Scholar 

  77. van den Heuvel EG, Schoterman MH, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130:2938–2942

    Article  PubMed  Google Scholar 

  78. Biver E, Durosier-Izart C, Merminod F, Chevalley T, van Rietbergen B, Ferrari SL, Rizzoli R (2018) Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int 2018; 29: 1771–1782

  79. Panahi S, Fernandez MA, Marette A, Tremblay A (2016) Yogurt, diet quality and lifestyle factors. Eur J Clin Nutr 71:573

    Article  PubMed  CAS  Google Scholar 

  80. Zhu K, Prince RL (2015) Lifestyle and osteoporosis. Curr Osteoporos Rep 13:52–59

    Article  PubMed  Google Scholar 

  81. Roy DK, O'Neill TW, Finn JD et al (2003) Determinants of incident vertebral fracture in men and women: results from the European prospective osteoporosis study (EPOS). Osteoporos Int 14:19–26

    Article  CAS  PubMed  Google Scholar 

  82. Nevitt MC, Cummings SR, Stone KL, Palermo L, Black DM, Bauer DC, Genant HK, Hochberg MC, Ensrud KE, Hillier TA, Cauley JA (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140

    Article  PubMed  Google Scholar 

  83. Nakamura K, Kurahashi N, Ishihara J, Inoue M, Tsugane S, Japan Public Health Centre-based Prospective Study Group (2009) Calcium intake and the 10-year incidence of self-reported vertebral fractures in women and men: the Japan public health centre-based prospective study. Br J Nutr 101:285–294

    Article  CAS  PubMed  Google Scholar 

  84. Leslie WD, Lix LM (2014) Comparison between various fracture risk assessment tools. Osteoporos Int 25:1–21

    Article  CAS  PubMed  Google Scholar 

  85. Hidayat K, Du X, Shi BM (2018) Sex hormone-binding globulin and risk of fracture in older adults: systematic review and meta-analysis of observational studies. Osteoporos Int 29:2171–2180

    Article  CAS  PubMed  Google Scholar 

  86. Hidayat K, Du X, Wu MJ, Shi BM (2019) The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obes Rev 20:1494–1503

    Article  PubMed  Google Scholar 

  87. Hidayat K, Du X, Shi BM (2019) Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos Int 30:1923–1940

    Article  CAS  PubMed  Google Scholar 

  88. Institute of Medicine (US) Committee on Dietary Risk Assessment in the WIC Program. Dietary Risk Assessment in the WIC Program. Washington (DC): National Academies Press (US); 2002. 5, Food-Based Assessment of Dietary Intake. Available from: https://www.ncbi.nlm.nih.gov/books/NBK220560/

  89. Pranger IG, Joustra ML, Corpeleijn E, Muskiet FAJ, Kema IP, Oude Elferink SJWH, Singh-Povel C, Bakker SJL (2019) Fatty acids as biomarkers of total dairy and dairy fat intakes: a systematic review and meta-analysis. Nutr Rev 77:46–63

    PubMed  Google Scholar 

  90. de Oliveira Otto MC, Lemaitre RN, Song X, King IB, Siscovick DS, Mozaffarian D (2018) Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the cardiovascular health study. Am J Clin Nutr 108:476–484

    Article  PubMed  PubMed Central  Google Scholar 

  91. Imamura F, Fretts A, Marklund M et al (2018) Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med 15:e1002670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hidayat K, Yu LG, Yang JR et al (2020) The association between milk consumption and metabolic syndrome: a cross-sectional study of the residents of Suzhou, China and a meta-analysis. Br J Nutr. https://doi.org/10.1017/S0007114520000227 Ahead of print

  93. Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A (2016) Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 60:32527

    Article  PubMed  CAS  Google Scholar 

  94. Hidayat K, Du X, Shi BM (2019) Milk in the prevention and management of type 2 diabetes: the potential role of milk proteins. Diabetes Metab Res Rev: e3187

  95. Lamarche B, Givens DI, Soedamah-Muthu S, Krauss RM, Jakobsen MU, Bischoff-Ferrari HA, Pan A, Després JP (2016) Does milk consumption contribute to cardiometabolic health and overall diet quality? Can J Cardiol 32:1026–1032

    Article  PubMed  Google Scholar 

  96. Fenton TR, Lyon AW (2011) Milk and acid-base balance: proposed hypothesis versus scientific evidence. J Am Coll Nutr 30:471S–475S

    Article  CAS  PubMed  Google Scholar 

  97. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA (2009) Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res 24:1835–1840

    Article  CAS  PubMed  Google Scholar 

  98. Fenton TR, Eliasziw M, Tough SC, Lyon AW, Brown JP, Hanley DA (2010) Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study. BMC Musculoskelet Disord 11:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA (2009) Phosphate decreases urine calcium and increases calcium balance: a meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr J 8:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Calvez J, Poupin N, Chesneau C, Lassale C, Tomé D (2012) Protein intake, calcium balance and health consequences. Eur J Clin Nutr 66:281–295

    Article  CAS  PubMed  Google Scholar 

  101. Cao JJ, Johnson LK, Hunt JR (2011) A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women. J Nutr 141:391–397

    Article  CAS  PubMed  Google Scholar 

  102. Hunt JR, Johnson LK, Fariba Roughead ZK (2009) Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr 89:1357–1365

    Article  CAS  PubMed  Google Scholar 

  103. Kerstetter JE, O'Brien KO, Caseria DM, Wall DE, Insogna KL (2005) The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab 90:26–31

    Article  CAS  PubMed  Google Scholar 

  104. Rizzoli R, Biver E, Bonjour JP, Coxam V, Goltzman D, Kanis JA, Lappe J, Rejnmark L, Sahni S, Weaver C, Weiler H, Reginster JY (2018) Benefits and safety of dietary protein for bone health-an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos Int 29:1933–1948

    Article  CAS  PubMed  Google Scholar 

  105. Darling AL, Manders RJF, Sahni S, Zhu K, Hewitt CE, Prince RL, Millward DJ, Lanham-New SA (2019) Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int 30:741–761

    Article  CAS  PubMed  Google Scholar 

  106. Sahni S, Cupples LA, McLean RR, Tucker KL, Broe KE, Kiel DP, Hannan MT (2010) Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res 25:2770–2776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mangano KM, Walsh SJ, Kenny AM, Insogna KL, Kerstetter JE (2014) Dietary acid load is associated with lower bone mineral density in men with low intake of dietary calcium. J Bone Miner Res 29:500–506

    Article  CAS  PubMed  Google Scholar 

  108. Dargent-Molina P, Sabia S, Touvier M, Kesse E, Bréart G, Clavel-Chapelon F, Boutron-Ruault MC (2008) Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study. J Bone Miner Res 23:1915–1922

    Article  CAS  PubMed  Google Scholar 

  109. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gowing LR, Ali RL, Allsop S et al (2015) Global statistics on addictive behaviours: 2014 status report. Addiction 110:904–919

    Article  PubMed  Google Scholar 

  111. Guthold R, Stevens GA, Riley LM, Bull FC (2018) Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health 6:e1077–e1086

    Article  PubMed  Google Scholar 

  112. GBD 2016 Alcohol Collaborators (2018) Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet 392:1015–1035

    Article  PubMed Central  Google Scholar 

  113. NCD Risk Factor Collaboration (NCD-RisC) (2016) A century of trends in adult human height. Elife 5:e13410

    Article  Google Scholar 

  114. Salomon JA, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, Murray CJ (2012) Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the global burden disease study 2010. Lancet 380:2144–2162

    Article  PubMed  Google Scholar 

  115. Weaver CM, Proulx WR, Heaney R (1999) Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr 70:543S–548S

    Article  CAS  PubMed  Google Scholar 

  116. The Dietary Guidelines for Americans 2015-2020. Appendix 11. Food Sources of Calcium. https://health.gov/dietaryguidelines/2015/guidelines/appendix-11/. Accessed 20 Dec 2019

Download references

Funding

The study was supported by grants from the National Key R&D Program of China (No. 2017YFC1310700, No. 2017YFC1310701) and the Suzhou Science and Technology Bureau (No. SYS201741).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hidayat, B.-M. Shi or L.-Q. Qin.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19.8 kb)

ESM 2

(DOCX 35.2 kb)

ESM 3

(DOCX 29.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidayat, K., Du, X., Shi, BM. et al. Systematic review and meta-analysis of the association between dairy consumption and the risk of hip fracture: critical interpretation of the currently available evidence. Osteoporos Int 31, 1411–1425 (2020). https://doi.org/10.1007/s00198-020-05383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05383-3

Keywords

Navigation