Skip to main content

Advertisement

Log in

The effect of high-dose vitamin D3 supplementation on bone mineral density in subjects with prediabetes

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The rationale of this study was to determine the effect of high-dose vitamin D3 supplementation on bone mineral density (BMD). Prediabetic males given vitamin D had significantly less reduction in BMD at the femoral neck compared to the controls. The clinical implications of our findings require further investigation.

Introduction

Type 2 diabetes mellitus is associated with increased fracture risk, and recent studies show crosstalk between bone and glucose metabolism. Few studies have investigated the effect of vitamin D supplementation on the bone without additional calcium. In the present study, we aimed to determine whether a high dose of vitamin D3 could improve bone mass density (BMD) in prediabetic subjects.

Methods

The current study was conducted as a secondary research on a previously performed trial, in which 511 subjects with prediabetes were randomized to vitamin D3 (20,000 IU per week) versus placebo for 5 years. BMD was measured using dual-energy X-ray absorptiometry (DEXA).

Results

Two hundred and fifty-six subjects were randomized to vitamin D and 255 to placebo. Mean baseline serum 25-hydroxyvitamin D (25(OH)D) level was 60 nmol/L. Two hundred and two and 214 in the vitamin D and placebo groups, respectively, completed BMD measurements, whereas one in each group was excluded due to use of bisphosphonates. Males given vitamin D had significantly less reduction in BMD at the femoral neck measurement site compared to the controls (0.000 versus − 0.010 g/cm2, p = 0.008). No significant differences between intervention groups were seen at the total hip measurement site, regarding both males and females.

Conclusions

Vitamin D3 supplementation alone may be beneficial in males with prediabetes, but confirmatory studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. https://doi.org/10.1016/j.diabres.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236. https://doi.org/10.1038/nrendo.2011.183

    Article  PubMed  Google Scholar 

  3. Knowler WC, Barett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403. https://doi.org/10.1056/NEJMoa012512

    Article  CAS  PubMed  Google Scholar 

  4. Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, Webb D (2013) Progression rates from HbA1c 6.0–6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia 56:1489–1493. https://doi.org/10.1007/s00125-013-2902-4

    Article  CAS  PubMed  Google Scholar 

  5. Singleton JR, Smith AG, Russell JW, Feldman EL (2003) Microvascular complications of impaired glucose tolerance. Diabetes 52:2867–2873. https://doi.org/10.2337/diabetes.52.12.2867

    Article  CAS  PubMed  Google Scholar 

  6. Plantinga LC, Crews DC, Coresh J, Miller ER, Saran R, Yee J, Hedgeman E, Pavkov M, Eberhardt MS, Williams DE (2010) Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol 5:673–682. https://doi.org/10.2215/CJN.07891109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, Stolk L, Oei EH, van Meurs JB, Janssen JA, Hofman A, van Leeuwen JP, Witteman JC, Pols HA, Uitterlinden AG, Klaver CC, Franco OH, Rivadeneira F (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 36:1619–1628. https://doi.org/10.2337/dc12-1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505. https://doi.org/10.1093/aje/kwm106

    Article  PubMed  Google Scholar 

  9. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192. https://doi.org/10.1001/jama.2011.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X, Rivadeneira F (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27:319–332. https://doi.org/10.1007/s10654-012-9674-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qu Y, Kang MY, Dong RP, Zhao JW (2016) Correlations between abnormal glucose metabolism and bone mineral density or bone metabolism. Med Sci Monit 22:824–832

    Article  PubMed  PubMed Central  Google Scholar 

  12. Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R (2010) Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis 20:683–690. https://doi.org/10.1016/j.numecd.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  13. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13. https://doi.org/10.1172/jci72323

    Article  PubMed  Google Scholar 

  14. Oldknow KJ, MacRae VE, Farquharson C (2015) Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol 225:R1–R19. https://doi.org/10.1530/joe-14-0584

    Article  CAS  PubMed  Google Scholar 

  15. Jorde R, Sollid ST, Svartberg J, Schirmer H, Joakimsen RM, Njolstad I, Fuskevag OM, Figenschau Y, Hutchinson MY (2016) Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes. J Clin Endocrinol Metab 101:1647–1655. https://doi.org/10.1210/jc.2015-4013

    Article  PubMed  Google Scholar 

  16. Anderson PH, Atkins GJ (2008) The skeleton as an intracrine organ for vitamin D metabolism. Mol Asp Med 29:397–406. https://doi.org/10.1016/j.mam.2008.05.003

    Article  CAS  Google Scholar 

  17. Grimnes G, Joakimsen R, Figenschau Y, Torjesen PA, Almas B, Jorde R (2012) The effect of high-dose vitamin D on bone mineral density and bone turnover markers in postmenopausal women with low bone mass—a randomized controlled 1-year trial. Osteoporos Int 23:201–211. https://doi.org/10.1007/s00198-011-1752-5

    Article  CAS  PubMed  Google Scholar 

  18. Kogawa M, Findlay DM, Anderson PH, Ormsby R, Vincent C, Morris HA, Atkins GJ (2010) Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology 151:4613–4625. https://doi.org/10.1210/en.2010-0334

    Article  CAS  PubMed  Google Scholar 

  19. Zhou S, LeBoff MS, Glowacki J (2010) Vitamin D metabolism and action in human bone marrow stromal cells. Endocrinology 151:14–22. https://doi.org/10.1210/en.2009-0969

    Article  CAS  PubMed  Google Scholar 

  20. Geng S, Zhou S, Glowacki J (2011) Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1alpha-hydroxylase. J Bone Miner Res 26:1145–1153. https://doi.org/10.1002/jbmr.298

    Article  CAS  PubMed  Google Scholar 

  21. Baldock PA, Thomas GP, Hodge JM, Baker SU, Dressel U, O'Loughlin PD, Nicholson GC, Briffa KH, Eisman JA, Gardiner EM (2006) Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res 21:1618–1626. https://doi.org/10.1359/jbmr.060714

    Article  CAS  PubMed  Google Scholar 

  22. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, Lafage-Proust MH, Dresselaers T, Feng JQ, Bonewald LF, Meyer MB, Pike JW, Bouillon R, Carmeliet G (2012) Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 122:1803–1815. https://doi.org/10.1172/jci45890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97. https://doi.org/10.1016/j.jsbmb.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sollid ST, Hutchinson MY, Fuskevag OM, Figenschau Y, Joakimsen RM, Schirmer H, Njolstad I, Svartberg J, Kamycheva E, Jorde R (2014) No effect of high-dose vitamin D supplementation on glycemic status or cardiovascular risk factors in subjects with prediabetes. Diabetes Care 37:2123–2131. https://doi.org/10.2337/dc14-0218

    Article  CAS  PubMed  Google Scholar 

  25. Sneve M, Figenschau Y, Jorde R (2008) Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocrinol 159:675–684. https://doi.org/10.1530/eje-08-0339

    Article  CAS  PubMed  Google Scholar 

  26. Melsom T, Mathisen UD, Eilertsen BA, Ingebretsen OC, Jenssen T, Njolstad I, Solbu MD, Toft I, Eriksen BO (2012) Physical exercise, fasting glucose, and renal hyperfiltration in the general population: the Renal Iohexol Clearance Survey in Tromso 6 (RENIS-T6). Clin J Am Soc Nephrol 7:1801–1810. https://doi.org/10.2215/cjn.02980312

    Article  PubMed  PubMed Central  Google Scholar 

  27. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  28. Vickers AJ, Altman DG (2001) Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 323:1123–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 383:146–155. https://doi.org/10.1016/s0140-6736(13)61647-5

    Article  CAS  PubMed  Google Scholar 

  30. Venkatachalam S, Gupta R, Speden D et al (2003) A randomised controlled trial of parenteral vitamin D in coeliac disease-bone density changes. Osteoporos Int 14(Suppl 4):S39–S40

    Google Scholar 

  31. Andersen R, Molgaard C, Skovgaard LT, Brot C, Cashman KD, Jakobsen J, Lamberg-Allardt C, Ovesen L (2008) Effect of vitamin D supplementation on bone and vitamin D status among Pakistani immigrants in Denmark: a randomised double-blinded placebo-controlled intervention study. Br J Nutr 100:197–207. https://doi.org/10.1017/s000711450789430x

    Article  CAS  PubMed  Google Scholar 

  32. Viljakainen HT, Vaisanen M, Kemi V, Rikkonen T, Kroger H, Laitinen EK, Rita H, Lamberg-Allardt C (2009) Wintertime vitamin D supplementation inhibits seasonal variation of calcitropic hormones and maintains bone turnover in healthy men. J Bone Miner Res 24:346–352. https://doi.org/10.1359/jbmr.081009

    Article  CAS  PubMed  Google Scholar 

  33. Reginster JY (1995) Treatment of bone in elderly subjects: calcium, vitamin D, fluor, bisphosphonates, calcitonin. Horm Res 43:83–88

    Article  CAS  PubMed  Google Scholar 

  34. Crilly RG, Cox L (2013) A comparison of bone density and bone morphology between patients presenting with hip fractures, spinal fractures or a combination of the two. BMC Musculoskelet Disord 14:68. https://doi.org/10.1186/1471-2474-14-68

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501. https://doi.org/10.1210/edrv.22.4.0437

    Article  CAS  PubMed  Google Scholar 

  36. Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P (1995) Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin Endocrinol Metab 80:1052–1058. https://doi.org/10.1210/jcem.80.4.7714065

    CAS  PubMed  Google Scholar 

  37. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Borjesson AE, Ohlsson C (2014) Sex steroid actions in male bone. Endocr Rev 35:906–960. https://doi.org/10.1210/er.2014-1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30. https://doi.org/10.1186/1749-799x-6-30

    Article  PubMed  PubMed Central  Google Scholar 

  39. Riggs BL, Melton Iii LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, CH MC, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954. https://doi.org/10.1359/jbmr.040916

    Article  PubMed  Google Scholar 

  40. Khosla S, Amin S, Orwoll E (2008) Osteoporosis in men. Endocr Rev 29:441–464. https://doi.org/10.1210/er.2008-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302. https://doi.org/10.1210/edrv.23.3.0465

    Article  CAS  PubMed  Google Scholar 

  42. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA, Hurley BF (1997) Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol 83:1581–1587

    Article  CAS  PubMed  Google Scholar 

  43. Visser M, Fuerst T, Lang T, Salamone L, Harris TB (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, aging, and body composition study—dual-energy X-ray absorptiometry and body composition working group. J Appl Physiol 87:1513–1520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the superb assistance from the staff at the Clinical Research Unit (in particular Aslaug Jakobsen) and the Department of Medical Biochemistry at the University Hospital of North Norway.

Funding

The study was supported by grants from the Novo Nordisk Foundation (Grant R195-A16126), the North Norway Regional Health Authorities (Grant 6856/SFP1029-12), UiT The Arctic University of Norway, the Norwegian Diabetes Association, and the Research Council of Norway (Grant 184766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. Larsen.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, A.U., Grimnes, G. & Jorde, R. The effect of high-dose vitamin D3 supplementation on bone mineral density in subjects with prediabetes. Osteoporos Int 29, 171–180 (2018). https://doi.org/10.1007/s00198-017-4222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4222-x

Keywords

Navigation