Skip to main content

Advertisement

Log in

Association of bone mineral density and diabetic retinopathy in diabetic subjects: the 2008–2011 Korea National Health and Nutrition Examination Survey

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Because diabetic retinopathy increases fracture risk, we studied the association between bone mineral density (BMD) and diabetic retinopathy in a nationally representative sample. A significant association between the presence of diabetic retinopathy and low BMD was observed. Therefore, diabetic retinopathy might be considered as a marker of low BMD.

Introduction

Several diabetic complications, including nephropathy, retinopathy, and peripheral neuropathy, are associated with a higher fracture risk in diabetic subjects. However, in contrast to diabetic nephropathy and peripheral neuropathy, which are associated with low bone mineral density (BMD), little is known about the association between BMD and diabetic retinopathy. The aim of the present study was to determine whether the prevalence of diabetic retinopathy is associated with BMD.

Methods

This cross-sectional study included a nationally representative sample consisting of 4357 men aged 50 years and older and 4392 postmenopausal women who participated in the Korea National Health and Nutritional Examination Survey (KNHANES) from 2008 to 2011 and underwent BMD measurement by dual-energy X-ray absorptiometry (DXA) and diabetic retinopathy assessments using seven standard gradable photographs.

Results

The diabetic women with retinopathy had lower mean BMD at all measured sites than those without retinopathy, although the BMD difference between the two groups was small (3–5 %). In addition, the diabetic women with retinopathy were 2.27 times more likely to have osteoporosis following adjustments for all clinically relevant covariates. However, the prevalence of diabetes mellitus (DM) or diabetic retinopathy was not associated with the prevalence of osteoporosis in men.

Conclusions

This study has shown that the presence of diabetic retinopathy is significantly associated with a reduced BMD and increased prevalence of osteoporosis in diabetic women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saaddine JB, Honeycutt AA, Narayan KM, Zhang X, Klein R, Boyle JP (2008) Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005-2050. Arch Ophthalmol-Chic 126:1740–1747

    Article  Google Scholar 

  3. Korean Diabetes Association (2013) Diabetes fact sheet in Korea 2013. Korean Diabetes Association. http://www.diabetes.or.kr/temp/diabetes_factsheet_2013111.pdf. Accessed September 21 2015.

  4. Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA J Am Med Assoc 298:902–916

    Article  CAS  Google Scholar 

  5. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  PubMed  Google Scholar 

  6. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203

    Article  CAS  PubMed  Google Scholar 

  7. Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV, Shepelkevich AP, Zhurava IV, Korolenko GG, Salko OB, Cairoli E, Beck-Peccoz P, Chiodini I (2013) Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36:1635–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23:1334–1342

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocr Metab 91:3404–3410

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert MP, Pratley RE (2015) The impact of diabetes and diabetes medications on bone health. Endocr Rev 36:194–213

    Article  CAS  PubMed  Google Scholar 

  11. Dede AD, Tournis S, Dontas I, Trovas G (2014) Type 2 diabetes mellitus and fracture risk. Metabolis 63:1480–1490

    Article  CAS  Google Scholar 

  12. de Waard EA, van Geel TA, Savelberg HH, Koster A, Geusens PP, van den Bergh JP (2014) Increased fracture risk in patients with type 2 diabetes mellitus: an overview of the underlying mechanisms and the usefulness of imaging modalities and fracture risk assessment tools. Maturitas 79:265–274

    Article  PubMed  Google Scholar 

  13. Forst T, Pfutzner A, Kann P, Schehler B, Lobmann R, Schafer H, Andreas J, Bockisch A, Beyer J (1995) Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabet Med 12:874–879

    Article  CAS  PubMed  Google Scholar 

  14. Kayath MJ, Dib SA, Vieira JG (1994) Prevalence and magnitude of osteopenia associated with insulin-dependent diabetes mellitus. J Diabetes Complicat 8:97–104

    Article  CAS  PubMed  Google Scholar 

  15. Clausen P, Feldt-Rasmussen B, Jacobsen P, Rossing K, Parving HH, Nielsen PK, Feldt-Rasmussen U, Olgaard K (1997) Microalbuminuria as an early indicator of osteopenia in male insulin-dependent diabetic patients. Diabet Med 14:1038–1043

    Article  CAS  PubMed  Google Scholar 

  16. Kim S, Jung A (2013) Optimum cutoff value of urinary cotinine distinguishing South Korean adult smokers from nonsmokers using data from the KNHANES (2008-2010). Nicotine Tob Res 15:1608–1616

    Article  CAS  PubMed  Google Scholar 

  17. Simonelli C, Adler RA, Blake GM, Caudill JP, Khan A, Leib E, Maricic M, Prior JC, Eis SR, Rosen C, Kendler DL (2008) Dual-energy x-ray absorptiometry technical issues: the 2007 ISCD official positions. J Clin Densitom 11:109–122

    Article  PubMed  Google Scholar 

  18. Binkley N, Bilezikian JP, Kendler DL, Leib ES, Lewiecki EM, Petak SM (2006) Official positions of the international society for clinical densitometry and executive summary of the 2005 position development conference. J Clin Densitom 9:4–14

    Article  PubMed  Google Scholar 

  19. (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:786-806

  20. Campos Pastor MM, Lopez-Ibarra PJ, Escobar-Jimenez F, Serrano Pardo MD, Garcia-Cervigon AG (2000) Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 11:455–459

    Article  CAS  PubMed  Google Scholar 

  21. Carnevale V, Romagnoli E, D’Erasmo L, D’Erasmo E (2014) Bone damage in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis: NMCD 24:1151–1157

    Article  CAS  PubMed  Google Scholar 

  22. Wientroub S, Eisenberg D, Tardiman R, Weissman SL, Salama R (1980) Is diabetic osteoporosis due to microangiopathy? Lancet 2:983

    Article  CAS  PubMed  Google Scholar 

  23. Schmidl D, Schmetterer L, Garhofer G, Popa-Cherecheanu A (2015) Gender differences in ocular blood flow. Curr Eye Res 40:201–212

    Article  CAS  PubMed  Google Scholar 

  24. Faria AF, de Souza MA, Geber S (2011) Vascular resistance of central retinal artery is reduced in postmenopausal women after use of estrogen. Menopause 18:869–872

    Article  PubMed  Google Scholar 

  25. Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK, Harkonen P (1998) Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22:201–209

    Article  CAS  PubMed  Google Scholar 

  26. Chow J, Tobias JH, Colston KW, Chambers TJ (1992) Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. J Clin Invest 89:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    Article  CAS  PubMed  Google Scholar 

  29. Mitamura Y, Harada C, Harada T (2005) Role of cytokines and trophic factors in the pathogenesis of diabetic retinopathy. Curr Diabetes Rev 1:73–81

    Article  CAS  PubMed  Google Scholar 

  30. Hussein KA, Choksi K, Akeel S, Ahmad S, Megyerdi S, El-Sherbiny M, Nawaz M, Abu El-Asrar A, Al-Shabrawey M (2014) Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy. Exp Eye Res 125:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogt RR, Unda R, Yeh LC, Vidro EK, Lee JC, Tsin AT (2006) Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells. J Cell Biochem 98:1196–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krane SM (2005) Identifying genes that regulate bone remodeling as potential therapeutic targets. J Exp Med 201:841–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24:297–310

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Wang H, Nie J, Wang F (2014) Protective factors in diabetic retinopathy: focus on blood-retinal barrier. Discov Med 18:105–112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The statistical consultation was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C1731). We thank Hyunyong Lee for his assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-I. Kang.

Ethics declarations

The institutional review board of the Catholic University of Korea approved this study (no. KC15RISI0608). Written informed consent was obtained from all participants.

Conflicts of interest

Yejee Lim, Sungha Chun, Jae Hyung Lee, Ki Hyun Baek, Won Ki Lee, Hyeon-Woo Yim, and Moo-Il Kang declare that they have no conflict of interest.

Additional information

Yejee Lim is the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Chun, S., Lee, J.H. et al. Association of bone mineral density and diabetic retinopathy in diabetic subjects: the 2008–2011 Korea National Health and Nutrition Examination Survey. Osteoporos Int 27, 2249–2257 (2016). https://doi.org/10.1007/s00198-016-3527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3527-5

Keywords

Navigation