Skip to main content
Log in

Thermochemical study of the detonation properties of boron- and aluminum-containing compounds in air and water

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Contrary to the conventional chemical propulsion systems based on the controlled relatively slow (subsonic) combustion of fuel in a combustor, the operation process in pulsed detonation engines (PDEs) and rotating detonation engines (RDEs) is based on the controlled fast (supersonic) combustion of fuel in pulsed and continuous detonation waves, respectively. One of the most important issues for such propulsion systems is the choice of fuel with proper reactivity and exothermicity required for a sustained and energy-efficient operation process. Presented in the paper are the results of thermodynamic calculations of the detonation parameters of boron- and aluminum-containing compounds (B, B\(_{{2}}\)H\(_{{6}}\), B\(_{{5}}\)H\(_{{9}}\), B\(_{{10}}\)H\(_{{14}}\), Al, AlH\(_{{3}}\), Al(C\(_{{2}}\)H\(_{{5}})_{{3}}\), and Al(CH\(_{{3}})_{{3}})\) in air and water. The results demonstrate the potential feasibility of using the considered compounds as fuels for both air- and water-breathing transportation vehicles powered with PDEs and RDEs. As a verification of the reliability of the calculated results, the detonation parameters of diborane, aluminum, and isopropyl nitrate in air were compared with experimental data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30(6), 545–672 (2004). https://doi.org/10.1016/j.pecs.2004.05.001

    Article  Google Scholar 

  2. Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019). https://doi.org/10.1016/j.pecs.2019.04.001

    Article  Google Scholar 

  3. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

  4. Ivanov, V.S., Frolov, S.M., Zangiev, A.E., Zvegintsev, V.I., Shamshin, I.O.: Hydrogen fueled detonation ramjet: conceptual design and test fires at Mach 1.5 and 2.0. Aerosp. Sci. Technol. 109, 106459 (2021). https://doi.org/10.1016/j.ast.2020.106459

    Article  Google Scholar 

  5. Frolov, S.M., Platonov, S.V., Avdeev, K.A., Aksenov, V.S., Ivanov, V.S., Zangiev, A.E., Sadykov, I.A., Tukhvatullina, R.R., Frolov, F.S., Shamshin, I.O.: Pulsed combustion of fuel-air mixture in a cavity above water surface: modeling and experiments. Shock Waves 32(1), 1–10 (2022). https://doi.org/10.1007/s00193-021-01045-3

    Article  Google Scholar 

  6. Frolov, S.M., Platonov, S.V., Avdeev, K.A., Aksenov, V.S., Ivanov, V.S., Zangiev, A.E., Sadykov, I.A., Tukhvatullina, R.R., Frolov, F.S., Shamshin, I.O.: Pulsed combustion of fuel-air mixture in a cavity under the boat bottom: modeling and experiments. Shock Waves 32(1), 11–24 (2022). https://doi.org/10.1007/s00193-021-01046-2

    Article  Google Scholar 

  7. Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O., Tukhvatullina, R.R.: Pulsed detonation hydroramjet: simulations and experiments. Shock Waves 30(3), 221–234 (2020). https://doi.org/10.1007/s00193-019-00906-2

    Article  Google Scholar 

  8. Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O.: Pulsed detonation hydroramjet: design optimization. J. Mar. Sci. Eng. 10, 1171 (2022). https://doi.org/10.3390/jmse10091171

    Article  Google Scholar 

  9. Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S., Bilera, I.V., Kazachenko, M.V., Shamshin, I.O., Gusev, P.A., Belotserkovskaya, M.S.: Detonability of fuel-air mixtures. Shock Waves 30(7–8), 721–729 (2020). https://doi.org/10.1007/s00193-020-00966-9

    Article  Google Scholar 

  10. Sokolik, A.S., Shchelkin, K.I.: Flame propagation in mixtures of methane with oxygen in closed tubes. Zh. Fiz. Khim. IV(1), 109–128 (1933) (in Russian)

  11. Sokolik, A.S., Shchelkin, K.I.: Detonability of oxygen mixtures of saturated and aromatic hydrocarbons. Zh. Fiz. Khim. IV(2), 129–131 (1933) (in Russian)

  12. Shchelkin, K.I.: Effect of tube roughness on the onset and propagation of detonation in gases. Zh. Exp. Teor. Fiz. 10(7), 823–827 (1940) (in Russian)

  13. Lee, J.H.S.: The Detonation Phenomenon. The Cambridge University Press, New York (2008)

    Book  Google Scholar 

  14. Frolov, S.M., Gel’fand, B.E.: On the limiting diameter for propagation of gas detonation in tubes. Dokl. USSR Acad. Sci. 312(5), 1177–1180 (1990)

    Google Scholar 

  15. Frolov, S.M., Shamshin, I.O., Kazachenko, M.V., Aksenov, V.S., Bilera, I.V., Ivanov, V.S., Zvegintsev, V.I.: Polyethylene pyrolysis products: their detonability in air and applicability to solid-fuel detonation ramjets. Energies 14, 820 (2021). https://doi.org/10.3390/en14040820

    Article  Google Scholar 

  16. Rozing, V.S., Khariton, Y.B.: Termination of detonation of high explosives at a small diameter of the charge. Dokl. Phys. 26, 28–30 (1939) (in Russian)

  17. Afanasiev, G.N., Bedov, V.I., Sergienko, O.I.: Detonability of solid explosives with high density. Fiz. Goreniya Vzryva 17(2), 158–159 (1981) (in Russian)

  18. Pepekin, V.I., Korsunskii, B.L., Denisaev, A.A.: Initiation of solid explosives by mechanical impact. Combust. Explos. Shock Waves 44(5), 586–590 (2008). https://doi.org/10.1007/s10573-008-0089-7

    Article  Google Scholar 

  19. Pepekin, V.I.: The criterion for estimation of the detonability of organic high explosives. Combust. Explos. 3, 286–291 (2010)

    Google Scholar 

  20. Nettleton, M.A.: Gaseous Detonations: Their Nature, Effects and Control. Chapman and Hall, London (1987)

    Book  Google Scholar 

  21. Miller, T., Herr, J.: Green rocket propulsion by reaction of Al and Mg powders and water. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, AIAA Paper 2004-4037 (2004). https://doi.org/10.2514/6.2004-4037

  22. Risha, G.A., Son, S.F., Yetter, R.A., Yang, V., Tappan, B.C.: Combustion of nano-aluminum and liquid water. Proc. Combust. Inst. 31, 2029–2036 (2007). https://doi.org/10.1016/j.proci.2006.08.056

    Article  Google Scholar 

  23. Eisen, N.E., Gany, A.: Investigation of a marine water-breathing hybrid ram-rocket motor. J. Propuls. Power 38(3), 370–377 (2022). https://doi.org/10.2514/1.B38590

    Article  Google Scholar 

  24. Xiang, D., Rong, J., He, X., Feng, Z.: Underwater explosion performance of RDX/AP-based aluminized explosives. Cent. Eur. J. Energ. Mater. 14(1), 60–76 (2017). https://doi.org/10.22211/cejem/68443

    Article  Google Scholar 

  25. Liu, J., An, F.-J., Wu, C., Liao, S.-S., Zhou, M., Xue, D.: The early responses of air-backed plate subjected to underwater explosion with aluminized explosives. Def. Technol. 16(3), 642–650 (2020). https://doi.org/10.1016/j.dt.2019.11.003

    Article  Google Scholar 

  26. Shan, F., He, Y., Wang, H., Gao, Z., Chen, P., Fang, Z., Pan, X., Jiao, J.: Influence of afterburn reaction on the underwater explosion of aluminized explosives. J. Appl. Phys. 132, 194701 (2022). https://doi.org/10.1063/5.0125368

    Article  Google Scholar 

  27. Zel’dovich, Y.B., Kompaneets, A.S.: The Theory of Detonation. Gostekhteorizdat, Moscow (1955) (in Russian)

  28. Benson, G.E., Genco, R.S., Gerstein, M.: A preliminary experimental and analytical evaluation of diborane as a ram-jet fuel. NACA-RM-E50J04 (1950). https://ntrs.nasa.gov/citations/19930086375

  29. Kaufman, W.B., Gibbs, J.B., Branstetter, J.R.: Preliminary investigation of combustion of diborane in a turbojet combustor. NACA-RM-E52L15 (1957). https://ntrs.nasa.gov/citations/19930087431

  30. Olson, W.T., Breitwieser, R., Gibbons, L.C.: A review of NACA research through 1954 on boron compounds as fuels for jet aircraft (Project Zip). NACA-RM-E55B01 (1957). https://ntrs.nasa.gov/citations/19650073882

  31. Seedhouse, E.: SpaceX: Starship to Mars-The First 20 Years. Springer, Cham (2022)

    Book  Google Scholar 

  32. Billig, F.S.: A study of combustion in supersonic streams. Doctoral dissertation, University of Maryland, MD, USA (1964)

  33. Frolov, S.M., Basevich, V.Y., Belyaev, A.A., Shamshin, I.O., Aksenov, V.S., Frolov, F.S., Storozhenko, P.A., Guseinov, S.L.: Kinetic model and experiment for self-ignition of triethylaluminum and triethylborane droplets in air. Micromachines 13, 2033 (2022). https://doi.org/10.3390/mi13112033

    Article  Google Scholar 

  34. Schalla, R.L.: Spontaneous Ignition Limits of Pentaborane. National Advisory Committee for Aeronautics, New York (1957)

    Google Scholar 

  35. Poling, E., Simons, H.P.: Explosive reaction of diborane in dry and water-saturated air. Ind. Eng. Chem. 50(11), 1695–1698 (1958). https://doi.org/10.1021/ie50587a051

    Article  Google Scholar 

  36. Martin, F.J., Kydd, P.H., Browne, W.G.: Condensation of products in diborane-air detonations. Proc. Symp. (Int.) Combust. 8(1), 633–644 (1961). https://doi.org/10.1016/s0082-0784(06)80555-2

    Article  Google Scholar 

  37. Sample, P., Simons, H.P.: Explosive reactions of diborane in benzenesaturated air. Ind. Eng. Chem. 50(11), 1699–1702 (1958). https://doi.org/10.1021/ie50587a052

    Article  Google Scholar 

  38. Whatley, A.T., Pease, R.N.: Observations on thermal explosions of diborane-oxygen mixtures. J. Am. Chem. Soc. 76(7), 1997–1999 (1954). https://doi.org/10.1021/ja01636a089

    Article  Google Scholar 

  39. Baden, H.C., Bauer, W.H., Wiberley, S.E.: The explosive oxidation of pentaborane. J. Phys. Chem. 62(3), 331–334 (1958). https://doi.org/10.1021/j150561a021

    Article  Google Scholar 

  40. Bauer, W.H., Wiberley, S.E.: Explosive oxidation of boranes. In: Borax to Boranes, Advances in Chemistry, pp. 115–126. American Chemical Society, Washington (1961)

  41. Strauss, W.A.: Investigation of the detonation in aluminum powder—oxygen mixtures. AIAA J. 6(9), 1753–1756 (1968). https://doi.org/10.2514/3.4855

    Article  Google Scholar 

  42. Tulis, A.J., Selman, J.R.: Detonation tube studies of aluminum particles dispersed in air. Proc. Symp. (Int.) Combust. 19(1), 655–663 (1982). https://doi.org/10.1016/s0082-0784(82)80240-3

    Article  Google Scholar 

  43. Borisov, A.A., Khasainov, B.A., Saneev, E.L., Fomin, I.B., Khomik, S.V., Veyssiere, B.: On the detonation of aluminum suspensions in air and in oxygen. In: Borisov, A.A. (ed.) Dynamic Structure of Detonation in Gaseous and Dispersed Media, pp. 215–253. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3548-1_8

  44. Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Study of detonation initiation in unconfined aluminum dust clouds. In: Roy, G., Frolov, S., Kailasanath, K., Smirnov, N. (eds.) Gaseous and Heterogeneous Detonations: Science to Applications, pp. 337–350. ENAS Publications, Moscow (1999)

    Google Scholar 

  45. Zhang, F., Grönig, H., van de Ven, A.: DDT and detonation waves in dust-air mixtures. Shock Waves 11(1), 53–71 (2001). https://doi.org/10.1007/pl00004060

    Article  Google Scholar 

  46. Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminum dust-air detonation at elevated pressures. In: Proceedings of the 24th International Symposium on Shock Waves, pp. 795–800. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-27009-6_119

  47. Tulis, A.J., Fochtman, E.G., Heberlein, D.C.: Experimental methods for assessing detonation/deflagration in pyrotechnical dusts. Proceedings of the 7th (International) Pyrotechnics Seminar, vol. 2, pp. 859–877. IIT Research Institute (1980)

  48. Heuze, O., Bauer, P., Presles, H.N., Brochet, C.: The equation of state of detonation products and their incorporation into the Quatuor Code II. Proceedings of the 8th Symposium (International) Detonations, Preprints, Albuquerque, New Mexico, pp. 103–110 (1985)

  49. Fedorov, A.V., Telenov, E.A.: Initiation of the heterogeneous detonation of aluminum particles dispersed in oxygen. Combust. Explos. Shock Waves 28(3), 83–89 (1992). https://doi.org/10.1007/bf00749645

    Article  Google Scholar 

  50. Veyssiere, B., Khasainov, B.A.: Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures. Shock Waves 4(3), 171–186 (1994). https://doi.org/10.1007/bf01414983

    Article  Google Scholar 

  51. Khasainov, B.A., Veyssiere, B.: Initiation of detonation regimes in hybrid two-phase mixtures. Shock Waves 6, 9–16 (1996). https://doi.org/10.1007/bf02511399

    Article  Google Scholar 

  52. Fedorov, A.V., Khmel’, T.A., Fomin, V.M.: Non-equilibrium model of steady detonations in aluminum particles—oxygen suspensions. Shock Waves 9(5), 313–318 (1999). https://doi.org/10.1007/s001930050191

    Article  MATH  Google Scholar 

  53. Benkiewicz, K., Hayashi, A.K.: Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement. Shock Waves 13, 385–402 (2003). https://doi.org/10.1007/s00193-002-0169-7

    Article  MATH  Google Scholar 

  54. Fedorov, A.V., Khmel’, T.A.: Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles. Combust. Explos. Shock Waves 44, 343–353 (2008). https://doi.org/10.1007/s10573-008-0042-9

    Article  Google Scholar 

  55. Fedorov, A.V., Khmel, T.A., Kratova, Yu.V.: Heterogeneous detonation of monodisperse and polydisperse gas-particle mixtures. In: Frolov, S.M., Zhang, F., Wolansky, P. (eds.) Recent Accomplishments: Explosion Dynamics and Hazards, pp. 273–290. Torus Press, Moscow (2010)

    Google Scholar 

  56. Kuznetsov, N.M., Frolov, S.M., Shamshin, I.O., Storozhenko, P.A.: Kinetics of the interaction of triethylaluminum drops with superheated steam: experiment, physicochemical model, and scheme of chemical reactions. Combust. Explos. 13(3), 76–81 (2020). https://doi.org/10.30826/CE20130307

    Article  Google Scholar 

  57. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics, 4th edn. Wiley, Hoboken (2006)

    Google Scholar 

  58. Reynolds, W.C.: The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN. Department of Mechanical Engineering, Stanford University Press, Stanford (1986)

    Google Scholar 

  59. https://www.ansys.com/products/fluids/ansys-chemkin-pro. Accessed 27 Mar 2023

  60. JANAF database. https://janaf.nist.gov. Accessed 27 Mar 2023

  61. OpenFOAM database. https://github.com. Accessed 27 Mar 2023

  62. Fowell, P.A.: The heat of formation of some metal alkyls and of some phosphine imines. PhD Thesis, University of Manchester, Manchester (1961)

  63. Fic, V.: Some thermodynamic characteristics of triethylaluminum. Chemicky Prumysl. 16(10), 607–610 (1966)

    Google Scholar 

  64. Leal, J.P., Martinho Simoes, J.A.: Standard enthalpy of formation of triethylaluminum. Organometallics 12(4), 1442–1444 (1993). https://doi.org/10.1021/om00028a072

    Article  Google Scholar 

  65. Shaulov, Y.K., Shmyreva, G.O., Tubyanskaya, V.S.: Heat of formation of organoaluminum compounds. II. Heat of formation of triethylaluminum, diisobutylaluminum hydrate and diethylaluminum hydrate. Z. Fiz. Khim. 39(1), 105–110 (1965) (in Russian)

  66. Pawlenko, S.: Zur Thermochemie der metallorganischen Verbindungen, I. Thermochemische Werte der Aluminiumalkyle: Chemische Berichte 100(11), 3591–3598 (1967)

    Google Scholar 

  67. Krupnov, A.A., Pogosbekyan, M.Y.: Thermodynamic properties of triethylaluminum isomers. Combust. Explos. 15(4), 112–122 (2022). https://doi.org/10.30826/CE22150412

    Article  Google Scholar 

  68. Allendorf, M.D., Melius, C.F., Cosic, B., Fontijn, A.: BAC-G2 predictions of thermochemistry for gas-phase aluminum compounds. J. Phys. Chem. A 106(11), 2629–2640 (2002). https://doi.org/10.1021/jp013128r

    Article  Google Scholar 

  69. Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminum particles-air detonation at elevated pressures. Shock Waves 15(5), 313–324 (2006). https://doi.org/10.1007/s00193-006-0027-0

  70. Fried, L.E., Howard, W.M., Souers, P.C.: Cheetah 2.0 User’s Manual, Rev. 5, Lawrence Livermore National Lab., Rept. UCRLMA-117541, Livermore, CA (1998)

  71. Karnesky, J., Pitz, W.J., Shepherd, J.E.: Detonation in gaseous isopropyl nitrate mixtures. 2007 Fall Meeting of the Western States Section of the Combustion Institute Sandia National Laboratories, Livermore, CA (2007)

  72. Curtiss, L.A., Raghavachari, K., Redfern, P.C., Pople, J.A.: Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106(3), 1063–1079 (1997). https://doi.org/10.1063/1.473182

    Article  Google Scholar 

  73. Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., Amosova, E.S., Varlamov, D.A., Lempert, D.B., Yanovskii, L.S.: Quantum chemical simulation of hydrocarbon compounds with high enthalpy. Russ. J. Phys. Chem. B 15, 12–24 (2021). https://doi.org/10.1134/S1990793121010127

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a subsidy given to Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences to implement the state assignment with Registration Number 122040500073-4 and by a subsidy given to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences” to implement the state assignment on the topic No. FNEF-2022-0005 (Registration No. 1021060708369-1-1.2.1). The data will be available on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Communicated by D. Frost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrdin, K.A., Frolov, S.M., Storozhenko, P.A. et al. Thermochemical study of the detonation properties of boron- and aluminum-containing compounds in air and water. Shock Waves 33, 501–520 (2023). https://doi.org/10.1007/s00193-023-01150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-023-01150-5

Keywords

Navigation