Skip to main content
Log in

Detonability of fuel–air mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A new experimental method for evaluating the detonability of fuel–air mixtures (FAMs) based on measuring the deflagration-to-detonation (DDT) run-up distance and/or time in a standard pulse detonation tube (SDT) is used to rank gaseous premixed and non-premixed FAMs by their detonability under substantially identical thermodynamic and gasdynamic conditions. In the experiments, FAMs based on hydrogen, acetylene, ethylene, propylene, propane–butane, n-pentane, and natural gas of various compositions, as well as FAMs based on the gaseous pyrolysis products of polypropylene (PP), are used: from extremely fuel-lean to extremely fuel-rich at normal temperatures and pressures. The concept of equivalent FAMs exhibiting the same or similar detonability under the same conditions is proposed. Equivalent FAMs can be used for predictive physical modeling of detonation processes involving FAMs of other fuels. The ranking of FAMs in terms of their relative detonability allows choosing a propylene FAM for physical modeling of the operation process in the PP-fueled solid-fuel ramjets operating on detonative combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kasahara, J., Frolov S.: Present status of pulse and rotating detonation engine research. 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leads, UK, Paper 304 (2015)

  2. Lee, J.H.S.: The Detonation Phenomenon. The Cambridge University Press, New York (2008)

    Book  Google Scholar 

  3. Frolov, S.M., Gel’fand, B.E.: On the limiting diameter for propagation of gas detonation in tubes. Dokl. USSR Acad. Sci. 312(5), 1177–1180 (1990)

    Google Scholar 

  4. Sokolik, A.S., Shchelkin, K.I.: Flame propagation in mixtures of methane with oxygen in closed tubes. Zh. Fiz. Khim. IV(1), 109–128 (1933)

    Google Scholar 

  5. Sokolik, A.S., Shchelkin, K.I.: Detonability of oxygen mixtures of saturated and aromatic hydrocarbons. Zh. Fiz. Khim. IV(2), 129–131 (1933)

    Google Scholar 

  6. Shchelkin, K.I.: Effect of tube roughness on the onset and propagation of detonation in gases. Zhurnal Exp. Teor. Fiz. 10(7), 823–827 (1940)

    Google Scholar 

  7. Papavassiliou, J., Makris, A., Knystautas, R., Lee, J.H.S., Westbrook, C.K., Pitz, W.J.: Measurements of cellular structure in spray detonations. In: Kuhl, A.L., Leyer, J.-C., Borisov, A.A., Sirignano, W.A. (eds.) Dynamics Aspects of Explosion Phenomena. Progress in Astronautics and Aeronautics Series, vol. 154, pp. 148–169. AIAA Inc., Washington (1993)

    Google Scholar 

  8. Frolov, S.M.: Liquid-fueled air-breathing pulse detonation engine demonstrator: operation principles and performance. J. Propuls. Power 6, 1162–1169 (2006). https://doi.org/10.2514/1.17968

    Article  Google Scholar 

  9. Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S., Bilera, I.V., Kazachenko, V.V., Shamshin, I.O., Gusev, P.A., Belotserkovskaya, M.S., Koverzanova, E.V.: Detonability of air mixtures of the polypropylene pyrolysis products. Gorenie i Vzryv (Moskva)—Combust. Explos. 11(4), 44–60 (2018). https://doi.org/10.30826/ce18110406

    Article  Google Scholar 

  10. Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S., Bilera, I.V., Kazachenko, V.V., Shamshin, I.O., Gusev, P.A., Belotserkovskaya, M.S.: Deflagration-to-detonation transition in the air mixtures of polypropylene pyrolysis products. Dokl. Phys. Chem. 488(1), 129–133 (2019). https://doi.org/10.1134/S0012501619090045

    Article  Google Scholar 

  11. Voinov, A.N.: Investigation into detonation and self-ignition in reciprocating engines operating on light fuel. Doctoral Thesis (in Technic). Inst. Chem. Phys., USSR Acad. of Sci., Moscow (1957)

  12. Hensinger, D.M., Masson, J.A., Hom, К., Oppenheim, A.К.: Jet-plume injection and combustion. SAE Paper 920414 (1992)

  13. Frolov, S.M.: Initiation of strong reactive shocks and detonation by traveling ignition pulses. J. Loss Prev. 19(2-3), 238–244 (2005). https://doi.org/10.1016/j.jlp.2005.04.006

    Article  Google Scholar 

  14. Frolov, S.M., Aksenov, V.S., Dubrovskii, A.V., Zangiev, A.E., Ivanov, V.S., Medvedev, S.N., Shamshin, I.O.: Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors. Dokl. Phys. Chem. 465(1), 273–278 (2015). https://doi.org/10.1134/S0012501615110019

    Article  Google Scholar 

  15. Borisov, A.A., Gelfand, B.E., Loban, S.A., Mailkov, A.E., Khomik, S.V.: Study of detonation limits in fuel–air mixtures in smooth and rough tubes. Khimicheskaya Fiz. 1(6), 848–853 (1982)

    Google Scholar 

  16. Zvegintsev, V.I., Fedorychev, A.V., Zhesterev, D.V., Mishkin, I.R., Frolov, S.M.: Gasification of low-melting hydrocarbon materials in high-temperature gas flow. Gorenie i Vzryv (Moskva)—Combust. Explos. 12(3), 70–82 (2019). https://doi.org/10.30826/CE19120312

    Google Scholar 

  17. Zel’dovich, YaB, Borisov, A.A., Gel’fand, B.E., Frolov, S.M., Mailkov, A.E.: Nonideal detonation waves in rough tubes. In: Kuhl, A.L., Bowen, J.R., Leyer, J.-C., Borisov, A.A. (eds.) Progress in Astronautics and Aeronautics, Dynamics of Explosions, vol. 114, pp. 211–231. AIAA Inc., Washington (1988)

    Google Scholar 

  18. Zel’dovich, YaB, Kompaneets, A.S.: The Theory of Detonation. Gostekhteorizdat, Moscow (1955)

    Google Scholar 

  19. Antonov, V.N., Lapidis, A.S.: Production of Acetylene. Khimiya Publishers, Moscow (1970)

    Google Scholar 

  20. Basevich, VYa., Belyaev, A.A., Posvyanskii, V.S., Frolov, S.M.: Mechanisms of the oxidation and combustion of normal paraffin hydrocarbons: transition from C1–C10 to C11–C16. Russ. J. Phys. Chem. B 7(2), 161–169 (2013). https://doi.org/10.1134/s1990793113020103

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly performed due to the subsidy allocated by the N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences for the implementation of the State Task No. 0082-2016-0011 (State Registration Number AAAA-A17-117040610346-5), and also with the support of the Russian Foundation for Basic Research (Grant No. 18-08-00076a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S. et al. Detonability of fuel–air mixtures. Shock Waves 30, 721–739 (2020). https://doi.org/10.1007/s00193-020-00966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00966-9

Keywords

Navigation