Skip to main content
Log in

Blast wave mitigation with galvanised polyurethane foam in a sandwich cladding

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The sandwich cladding is a blast mitigation technique well described in the literature. One of the key parameters for its efficiency is a good knowledge on the crushable core placed inside the cladding. This paper focuses on galvanised polyurethane foams, a new family of hybrid materials which can fill the role of a crushable core. The galvanisation process allows to add a metal layer on top of a polyurethane foam, modifying its behaviour under tension and compression. This material was subjected to quasi-static tests and then placed inside a sandwich cladding allowing its dynamic characterisation under blast load. Using the methodology recommended by previous work, the energy absorption capacity of this new material has been determined based on the measured experimental stress–strain curves. The parameters of these curves, such as the plateau stress, densification strain, and energy absorption by unit volume, are directly linked to several parameters of the galvanisation process, including the Cu/Ni composite coating as well as the coating thickness. The results of this study present galvanised polyurethane foams as a serious alternative for crushable cores, which can be tailor-made to protect different targets by changing the parameters of the galvanisation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pontalier, Q., Loiseau, J., Goroshin, S., Frost, D.L.: Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids. Shock Waves 28(3), 489–511 (2018). https://doi.org/10.1007/s00193-018-0821-5

    Article  Google Scholar 

  2. Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A., Haas, J.-F.: Blast wave mitigation by dry aqueous foams. Shock Waves 23(1), 39–53 (2013). https://doi.org/10.1007/s00193-012-0400-0

    Article  Google Scholar 

  3. Schwer, D., Kailasanath, K.: Numerical simulation of the mitigation of unconfined explosion using water-mist. Proc. Combust. Inst. 31, 2361–2369 (2007). https://doi.org/10.1016/j.proci.2006.07.145

    Article  Google Scholar 

  4. Sochet, I., Eveillard, S., Vinçont, J.Y., Piserchia, P.F., Rocourt, X.: Influence of the geometry of protective barriers on the propagation of shock waves. Shock Waves 27(2), 209–219 (2017). https://doi.org/10.1007/s00193-016-0625-4

    Article  Google Scholar 

  5. Smith, P.D.: Blast walls for structural protection against high explosive threats: a review. Int. J. Protect. Struct. 1(1), 67–84 (2010). https://doi.org/10.1260/2041-4196.1.1.67

    Article  Google Scholar 

  6. Trajkovski, J., Kunc, R., Prebil, I.: Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: comparative study. Shock Waves 27, 583–591 (2017). https://doi.org/10.1007/s00193-016-0704-6

    Article  Google Scholar 

  7. Hanssen, A.G., Enstock, L., Langseth, M.: Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 27, 593–618 (2002). https://doi.org/10.1016/s0734-743X(01)00155-5

    Article  Google Scholar 

  8. Ousji, H., Belkassem, B., Louar, M.A., Reymen, B., Martino, J., Lecompte, D., Pyl, L., Vantomme, J.: Air-blast response of sacrificial cladding using low density foams: experimental and analytical approach. Int. J. Mech. Sci. 128–129, 459–474 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.024

    Article  Google Scholar 

  9. Gibson, L.J., Ashby, M.: Cellular Solids, Structure and Properties. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9781139878326

    Book  MATH  Google Scholar 

  10. Maiti, S.K., Gibson, L.J., Ashby, M.: Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32(11), 1963–1975 (1984). https://doi.org/10.1016/0001-6160(84)90177-9

    Article  Google Scholar 

  11. Ouellet, S., Cronin, D., Worswick, M.: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 25(6), 731–743 (2006). https://doi.org/10.1016/j.polymertesting.2006.05.005

    Article  Google Scholar 

  12. Whisler, D., Kim, H.: Experimental and simulated high strain dynamic loading of polyurethane foam. Polym. Test. 41, 219–230 (2015). https://doi.org/10.1016/j.polymertesting.2014.12.004

    Article  Google Scholar 

  13. Koohbor, B., Kidane, A., Lu, W.-Y.: Characterising the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact. Polym. Test. 54, 48–58 (2016). https://doi.org/10.1016/j.polymertesting.2016.06.023

    Article  Google Scholar 

  14. Petel, O.E., Jetté, F.X., Goroshin, S., Frost, D.L., Ouellet, S.: Blast wave attenuation through a composite of varying layer distribution. Shock Waves 21(3), 215–224 (2011). https://doi.org/10.1007/s00193-010-0295-6

    Article  Google Scholar 

  15. Theobald, M., Langdon, G., Nurick, G., Pillay, S., Heyns, A., Merrett, R.: Large inelastic response of unbounded metallic foam and honeycomb core sandwich panels to blast loading. Compos. Struct. 92, 2465–2475 (2010). https://doi.org/10.1016/j.compstruct.2010.03.002

    Article  Google Scholar 

  16. Raj, R.E., Parameswaran, V., Daniel, B.S.S.: Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater. Sci. Eng. A 526(1–2), 11–15 (2009). https://doi.org/10.1016/j.msea.2009.07.017

    Article  Google Scholar 

  17. Mazor, G., Ben-Dor, G., Igra, O., Sorek, S.: Shock wave interaction with cellular materials. Part I: analytical investigation and governing equations. Shock Waves 3, 159–165 (1994). https://doi.org/10.1007/BF01414710

    Article  MATH  Google Scholar 

  18. Ben-Dor, G., Mazor, G., Igra, O., Sorek, S., Onodera, H.: Shock wave interaction with cellular materials. Part II: open cell foams; experimental and numerical results. Shock Waves 3, 167–179 (1994). https://doi.org/10.1007/BF01414711

    Article  MATH  Google Scholar 

  19. Zhang, J., Fan, J., Wang, Z., Zhao, L., Li, Z.: Shock enhancement of cellular materials subjected to intensive pulse loading. Shock Waves 28, 175–189 (2018). https://doi.org/10.1007/s00193-017-0730-z

    Article  Google Scholar 

  20. Petel, O.E., Ouellet, S., Higgins, A.J., Frost, D.L.: The elastic-plastic behavior of foam under shock loading. Shock Waves 23, 55–67 (2013). https://doi.org/10.1007/s00193-012-0414-7

    Article  Google Scholar 

  21. Merrett, R., Langdon, G., Theobald, M.: The blast and impact loading of aluminium foam. Mater. Des. 44, 311–319 (2013). https://doi.org/10.1016/j.matdes.2012.08.016

    Article  Google Scholar 

  22. Jung, A., Lach, E., Diebels, S.: New hybrid foam materials for impact protection. Int. J. Impact Eng. 64, 30–38 (2014). https://doi.org/10.1016/j.ijimpeng.2013.09.002

    Article  Google Scholar 

  23. Jung, A., Natter, H., Diebels, S., Lach, E., Hempelmann, R.: Nanonickel coated aluminum foam for enhanced impact energy absorption. Adv. Eng. Mater. 13, 23–28 (2011). https://doi.org/10.1002/adem.201000190

    Article  Google Scholar 

  24. Jung, A., Diebels, S.: Synthesis and mechanical properties of novel Ni/PU hybrid foams: a new economic composite material for energy absorbers. Adv. Eng. Mater. 18, 532–541 (2016). https://doi.org/10.1002/adem.201500405

    Article  Google Scholar 

  25. Blanc, L., Sturtzer, M.-O., Schunck, T., Eckenfels, D., Legendre, J.-F.: Blast wave mitigation using multi-phase solid material in a sandwich cladding. 25th International Symposium on Military Aspects of Blast and Shock MABS25, The Netherlands (2018). https://mabs.ch/data/documents/25-007.pdf

  26. Kambouchev, N., Noels, L., Radovitzky, R.: Non-linear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures. J. Appl. Phys. 100, 063519 (2006). https://doi.org/10.1063/1.2349483

    Article  Google Scholar 

  27. Li, Q.M., Magkiriadis, I., Harrigan, J.J.: Compressive strain at the onset of densification of cellular solids. J. Cell. Solid 42(5), 371–392 (2006). https://doi.org/10.1177/0021955X06063519

    Article  Google Scholar 

  28. Tao, Y., Chen, M., Chen, H., Pei, Y., Fang, D.: Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory. Compos. Struct. 132, 644–651 (2015). https://doi.org/10.1016/j.compstruct.2015.06.015

    Article  Google Scholar 

  29. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, H.N.G., Wadley, H.N.G.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2002). https://doi.org/10.1016/B978-0-7506-7219-1.X5000-4

    Book  Google Scholar 

Download references

Acknowledgements

The scientific results presented in this paper have been achieved with the financial support of the French Ministry of Defence, in the frame of an official subsidy agreement. Funding was provided by Direction Générale de l’Armement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Blanc.

Additional information

Communicated by P. Hazell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanc, L., Jung, A., Diebels, S. et al. Blast wave mitigation with galvanised polyurethane foam in a sandwich cladding. Shock Waves 31, 525–540 (2021). https://doi.org/10.1007/s00193-021-01032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01032-8

Keywords

Navigation