Skip to main content

Advertisement

Log in

Effect of bulk modulus on deformation of the brain under rotational accelerations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-\(\hbox {mm}^{3}\) voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Faul, M., Xu, L., Wald, M.M., Coronado, V.: Traumatic brain injury in the United States. National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta (2010)

  2. Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14(5), 931–965 (2015). https://doi.org/10.1007/s10237-015-0662-4

    Article  Google Scholar 

  3. Meaney, D.F., Morrison, B., Bass, C.D.: The mechanics of traumatic brain injury: A review of what we know and what we need to know for reducing its societal burden. J. Biomech. Eng. 136(2), 021008 (2014). https://doi.org/10.1115/1.4026364

    Article  Google Scholar 

  4. Mao, H., Zhang, L., Jiang, B., Genthikatti, V.V., Jin, X., Zhu, F., Makwana, R., Gill, A., Jandir, G., Singh, A., Yang, K.H.: Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135(11), 111002 (2013). https://doi.org/10.1115/1.4025101

    Article  Google Scholar 

  5. Giordano, C., Cloots, R., Van Dommelen, J., Kleiven, S.: The influence of anisotropy on brain injury prediction. J. Biomech. 47(5), 1052–1059 (2014). https://doi.org/10.1016/j.jbiomech.2013.12.036

    Article  Google Scholar 

  6. Ganpule, S., Daphalapurkar, N.P., Ramesh, K.T., Knutsen, A.K., Pham, D.L., Bayly, P.V., Prince, J.L.: A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma 34(13), 2154–2166 (2017). https://doi.org/10.1089/neu.2016.4744

    Article  Google Scholar 

  7. Chatelin, S., Constantinesco, A., Willinger, R.: Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology 47(5–6), 255–276 (2010). https://doi.org/10.3233/BIR-2010-0576

    Google Scholar 

  8. McElhaney, J., Melvin, J.W., Roberts, V.L., Portnoy, H.D.: Dynamic characteristics of the tissues of the head. In: Perspectives in Biomedical Engineering, pp. 215–222 (1973). https://doi.org/10.1007/978-1-349-01604-4_34

  9. Stalnaker, R.L.: Mechanical properties of the head. PhD Thesis, West Virginia University (1969)

  10. Etoh, A., Mitaku, S., Yamamoto, J., Okano, K.: Ultrasonic absorption anomaly of brain tissue. Jpn. J. Appl. Phys. 33(Part 1, 5B), 2874 (1994). https://doi.org/10.1143/JJAP.33.2874

  11. Ruan, J.S., Khalil, T., King, A.I.: Dynamic response of the human head to impact by three-dimensional finite element analysis. Trans. ASME J. Biomech. Eng. 116(1), 44–50 (1994). https://doi.org/10.1115/1.2895703

    Article  Google Scholar 

  12. Claessens, M., Sauren, F., Wismans, J.: Modeling of the human head under impact conditions: a parametric study. In: SAE Technical Paper 973338 (1997). https://doi.org/10.4271/973338

  13. El Sayed, T., Mota, A., Fraternali, F., Ortiz, M.: Biomechanics of traumatic brain injury. Comput. Methods Appl. Mech. Eng. 197(51–52), 4692–4701 (2008). https://doi.org/10.1016/j.cma.2008.06.006

    Article  MATH  Google Scholar 

  14. Zoghi-Moghadam, M., Sadegh, A.M.: Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH. Comput. Methods Biomech. Biomed. Eng. 12(1), 1–12 (2009). https://doi.org/10.1080/10255840802020420

    Article  Google Scholar 

  15. Giordano, C., Kleiven, S.: Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J. 58, 29 (2014)

    Google Scholar 

  16. Ji, S., Zhao, W., Ford, J.C., Beckwith, J.G., Bolander, R.P., Greenwald, R.M., Flashman, L.A., Paulsen, K.D., McAllister, T.W.: Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32(7), 441–454 (2015). https://doi.org/10.1089/neu.2013.3268

    Article  Google Scholar 

  17. Takhounts, E.G., Ridella, S.A., Hasija, V., Tannous, R.E., Campbell, J.Q., Malone, D., Danelson, K., Stitzel, J., Rowson, S., Duma, S.: Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52, 1–31 (2008)

    Google Scholar 

  18. Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., Tannous, R.E., Power, E.D., Shook, L.S.: On the development of the SIMon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)

    Google Scholar 

  19. Sahoo, D., Deck, C., Willinger, R.: Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33, 24–42 (2014). https://doi.org/10.1016/j.jmbbm.2013.08.022

    Article  Google Scholar 

  20. Kleiven, S., Hardy, W.N.: Correlation of an FE model of the human head with local brain motion: consequences for injury prediction. Stapp Car Crash J. 46, 123–144 (2002)

    Google Scholar 

  21. Horgan, T.J., Gilchrist, M.D.: Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness 9(4), 401–418 (2004). https://doi.org/10.1533/ijcr.2004.0299

    Article  Google Scholar 

  22. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2), 226–236 (2004). https://doi.org/10.1115/1.1691446

    Article  Google Scholar 

  23. Taylor, P.A., Ford, C.C.: Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131(6), 061007 (2009). https://doi.org/10.1115/1.3118765

    Article  Google Scholar 

  24. Zhang, L.Y., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2004). https://doi.org/10.1089/089771501750055749

    Article  Google Scholar 

  25. Ganpule, S., Alai, A., Plougonven, E., Chandra, N.: Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12(3), 511–531 (2013). https://doi.org/10.1007/s10237-012-0421-8

    Article  Google Scholar 

  26. Nyein, M.K., Jason, A.M., Yu, L., Pita, C.M., Joannopoulos, J.D., Moore, D.F., Radovitzky, R.A.: In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. 107(48), 20703–20708 (2010). https://doi.org/10.1073/pnas.1014786107

    Article  Google Scholar 

  27. Chen, Y., Ostoja-Starzewski, M.: MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213(1–2), 155–167 (2010). https://doi.org/10.1007/s00707-009-0274-0

    Article  MATH  Google Scholar 

  28. Chandra, N., Sundaramurthy, A., Gupta, R.K.: Validation of laboratory animal and surrogate human models in primary blast injury studies. Mil. Med. 182, 105–113 (2017)

  29. Goldstein, L.E., Fisher, A.M., Tagge, C.A., Zhang, X.-L., Velisek, L., Sullivan, J.A., Upreti, C., Kracht, J.M., Ericsson, M., Wojnarowicz, M.W.: Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4(134), 134ra160 (2012). https://doi.org/10.1126/scitranslmed.3003716

  30. Bayly, P.V., Clayton, E.H., Genin, G.M.: Quantitative imaging methods for the development and validation of brain biomechanics models. Annu. Rev. Biomed. Eng. 14, 369–396 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150032

  31. Horgan, T., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(4), 353–366 (2003). https://doi.org/10.1533/ijcr.2003.0243

    Article  Google Scholar 

  32. Bayly, P.V., Cohen, T.S., Leister, E.P., Ajo, D., Leuthardt, E.C., Genin, G.M.: Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22(8), 845–856 (2005). https://doi.org/10.1089/neu.2005.22.845

    Article  Google Scholar 

  33. Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19(3), 186–202 (2000). https://doi.org/10.1109/42.845177

    Article  Google Scholar 

  34. Bayly, P., Cohen, T., Leister, E., Ajo, D., Leuthardt, E., Genin, G.: Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22(8), 845–856 (2005). https://doi.org/10.1089/neu.2005.22.845

    Article  Google Scholar 

  35. Knutsen, A.K., Magrath, E., McEntee, J.E., Xing, F., Prince, J.L., Bayly, P.V., Butman, J.A., Pham, D.L.: Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J. Biomech. 47(14), 3475–3481 (2014). https://doi.org/10.1016/j.jbiomech.2014.09.010

    Article  Google Scholar 

  36. Bazin, P.-L., Pham, D.L.: Homeomorphic brain image segmentation with topological and statistical atlases. Med. Image Anal. 12(5), 616–625 (2008). https://doi.org/10.1016/j.media.2008.06.008

    Article  Google Scholar 

  37. Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006). https://doi.org/10.1007/s10237-005-0007-9

    Article  Google Scholar 

  38. Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013). https://doi.org/10.1016/j.jmbbm.2013.04.007

    Article  Google Scholar 

  39. Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. Trans. ASME J. Biomech. Eng. 124(2), 244–252 (2002). https://doi.org/10.1115/1.1449907

    Article  Google Scholar 

  40. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006). https://doi.org/10.1098/rsif.2005.0073

    Article  Google Scholar 

  41. Wright, R.M., Post, A., Hoshizaki, B., Ramesh, K.T.: A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma 30(2), 102–118 (2013). https://doi.org/10.1089/neu.2012.2418

    Article  Google Scholar 

  42. Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67(1), 17–21 (1999). https://doi.org/10.1115/1.321146

    Article  MATH  Google Scholar 

  43. Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business Media, Berlin (2013). https://doi.org/10.1007/978-1-4757-2257-4

    Google Scholar 

  44. Cole, R.H. Underwater Explosions. Dover Publications, USA (1965)

  45. Lee, S., King, M., Sun, J., Xie, H., Subhash, G., Sarntinoranont, M.: Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices. J. Mech. Behav. Biomed. Mater. 29, 213–224 (2014). https://doi.org/10.1016/j.jmbbm.2013.08.026

    Article  Google Scholar 

  46. McElhaney, J.H., Fogle, J.L., Melvin, J.W., Haynes, R.R., Roberts, V.L., Alem, N.M.: Mechanical properties of cranial bone. J. Biomech. 3(5), 495–511 (1970). https://doi.org/10.1016/0021-9290(70)90059-X

    Article  Google Scholar 

  47. McElhaney, J.H., Melvin, J.W., Roberts, V.L., Portnoy, H.D.: Dynamic characteristics of the tissues of the head. In: Kenedi, R.M. (ed.) Perspectives in Biomedical Engineering: Proceedings of a Symposium Organised in Association with the Biological Engineering Society and Held in the University of Strathclyde, Glasgow, June 1972, pp. 215–222. Palgrave Macmillan, London (1973). https://doi.org/10.1007/978-1-349-01604-4_34

    Chapter  Google Scholar 

  48. Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995). https://doi.org/10.1016/0010-4655(94)00170-7

    Article  MATH  Google Scholar 

  49. Daphalapurkar, N., Hanan, J., Phelps, N., Bale, H., Lu, H.: Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression. Mech. Adv. Mater. Struct. 15(8), 594–611 (2008). https://doi.org/10.1080/15376490802470523

    Article  Google Scholar 

  50. Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011). https://doi.org/10.1002/nme.3110

    Article  MathSciNet  MATH  Google Scholar 

  51. Ganpule, S., Daphalapurkar, N.P., Ramesh, K.T.: Shear wave propagation in soft materials with application to modeling traumatic brain injury. In: Proceedings of 17th US National Congress on Theoretical and Applied Mechanics, Paper B-08-671 (2014)

  52. Kamojjala, K., Brannon, R., Sadeghirad, A., Guilkey, J.: Verification tests in solid mechanics. Eng. Comput. 31(2), 193–213 (2015). https://doi.org/10.1007/s00366-013-0342-x

    Article  Google Scholar 

  53. Mast, C., Mackenzie-Helnwein, P., Arduino, P., Miller, G., Shin, W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012). https://doi.org/10.1016/j.jcp.2012.04.032

    Article  MathSciNet  Google Scholar 

  54. Kimpara, H., Nakahira, Y., Iwamoto, M., Miki, K., Ichihara, K., Kawano, S., Taguchi, T.: Investigation of anteroposterior head–neck responses during severe frontal impacts using a brain–spinal cord complex FE model. Stapp Car Crash J. 50, 509–544 (2006)

    Google Scholar 

  55. Rowson, S., Duma, S.M., Beckwith, J.G., Chu, J.J., Greenwald, R.M., Crisco, J.J., Brolinson, G.P., Duhaime, A.-C., McAllister, T.W., Maerlender, A.C.: Rotational head kinematics in football impacts: An injury risk function for concussion. Ann. Biomed. Eng. 40(1), 1–13 (2012). https://doi.org/10.1007/s10439-011-0392-4

    Article  Google Scholar 

  56. Rowson, S., Beckwith, J.G., Chu, J.J., Leonard, D.S., Greenwald, R.M., Duma, S.M.: A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27(1), 8–14 (2011). https://doi.org/10.1123/jab.27.1.8

    Article  Google Scholar 

  57. Ivanov, I., Fernandez, C., Mitsis, E.M., Dickstein, D.L., Wong, E., Tang, C.Y., Simantov, J., Bang, C., Moshier, E., Sano, M., Elder, G.A., Hazlett, E.A.: Blast exposure, white matter integrity, and cognitive function in Iraq and Afghanistan combat veterans. Front. Neurol. 8, 127 (2017). https://doi.org/10.3389/fneur.2017.00127

    Article  Google Scholar 

  58. MacDonald, C.L., Barber, J., Andre, J., Evans, N., Panks, C., Sun, S., Zalewski, K., Sanders, R.E., Temkin, N.: 5-Year imaging sequelae of concussive blast injury and relation to early clinical outcome. NeuroImage Clin. 14, 371–378 (2017). https://doi.org/10.1016/j.nicl.2017.02.005

    Article  Google Scholar 

  59. Adam, O., MacDonald, C.L., Rivet, D., Ritter, J., May, T., Barefield, M., Duckworth, J., LaBarge, D., Asher, D., Drinkwine, B. Woods, Y., Connor, M., Brody, D.L.: Clinical and imaging assessment of acute combat mild traumatic brain injury in Afghanistan. Neurology 85(3), 219–227 (2015). https://doi.org/10.1212/WNL.0000000000001758

  60. MacDonald, C.L., Johnson, A.M., Cooper, D., Nelson, E.C., Werner, N.J., Shimony, J.S., Snyder, A.Z., Raichle, M.E., Witherow, J.R., Fang, R. Flaherty, S.F., Brody, D.L.: Detection of blast-related traumatic brain injury in US military personnel. N. Engl. J. Med. 364(22), 2091–2100 (2011). https://doi.org/10.1056/NEJMoa1008069

  61. Eierud, C., Craddock, R.C., Fletcher, S., Aulakh, M., King-Casas, B., Kuehl, D., LaConte, S.M.: Neuroimaging after mild traumaticbrain injury: Review and meta-analysis. NeuroImage Clin. 4, 283–294 (2014). https://doi.org/10.1016/j.nicl.2013.12.009

    Article  Google Scholar 

  62. Herweh, C., Hess, K., Meyding-Lamadé, U., Bartsch, A.J., Stippich, C., Jost, J., Friedmann-Bette, B., Heiland, S., Bendszus, M., Hähnel, S.: Reduced white matter integrity in amateur boxers. Neuroradiology 58(9), 911–920 (2016). https://doi.org/10.1007/s00234-016-1705-y

  63. Meier, T.B., Bergamino, M., Bellgowan, P.S., Teague, T.K., Ling, J.M., Jeromin, A., Mayer, A.R.: Longitudinal assessment of white matter abnormalities following sports-related concussion. Hum. Brain Mapp. 37(2), 833–845 (2016). https://doi.org/10.1002/hbm.23072

    Article  Google Scholar 

  64. Sarvghad-Moghaddam, H., Jazi, M.S., Rezaei, A., Karami, G., Ziejewski, M.: Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves. Comput. Methods Biomech. Biomed. Eng. 18(16), 1846–1855 (2015). https://doi.org/10.1080/10255842.2014.977878

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Institute of Neurological Disorders and Strokes, National Institutes of Health (Project #R01NS055951). The authors also thank Andy Knutsen and Dzung Pham from the Henry Jackson Foundation for sharing tagged MRI experimental data from Knutsen et al. J. Biomechanics [35]. The numerical technique to circumvent locking in Uintah MPM package (http://www.uintah.utah.edu) was implemented by James Guilkey of the University of Utah, and we express our appreciation for his help and that of Rebecca Brannon with Uintah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganpule.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganpule, S., Daphalapurkar, N.P., Cetingul, M.P. et al. Effect of bulk modulus on deformation of the brain under rotational accelerations. Shock Waves 28, 127–139 (2018). https://doi.org/10.1007/s00193-017-0791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0791-z

Keywords

Navigation