Skip to main content
Log in

Application of the one-step integration method for determination of the regional gravimetric geoid

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The regional gravimetric geoid solved using boundary-value problems of the potential theory is usually determined in two computational steps: (1) downward continuing ground gravity data onto the geoid using inverse Poisson’s integral equation in a mass-free space and (2) evaluating geoidal heights by applying Stokes integral to downward continued gravity. In this contribution, the two integration steps are combined in one step and the so-called one-step integration method in spherical approximation is implemented to compute the regional gravimetric geoid model. Advantages of using the one-step integration method instead of the two integration steps include less computational cost, more stable numerical computation and better utilization of input ground gravity data (reduced in each integration step to avoid edge effects). A discrete form of the one-step integral equation is used to convert mean values of ground gravity anomalies into mean values of geoidal heights. To evaluate mean values of the integral kernel in the vicinity of the computation point, a fast and numerically accurate analytical formula is proposed using planar approximation. The proposed formula is tested to determine the regional gravimetric geoid of the Auvergne test area, France. Results show a good agreement of the estimated geoid with geoidal heights estimated at GNSS-levelling reference points, with the standard deviation for the difference of 3.3 cm. Considering the uncertainty of geoidal heights derived at the GNSS/levelling reference points, one can conclude the geoid models computed by the one-step and two-step integration methods have negligible differences. Thus, the one-step method can be recommended for regional geoid modelling with its methodological and numerical advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agren J, Barzagi R, Carrion D, Denker H, Grigoriados VN, Kiamehr R, Sona G, Tscherning CC, Tziavos IN (2009) Different geoid computation methods applied on a test data set: results and considerations. In: Presented at the 9th Hotine–Marrussi symposium on mathematical geodesy, Rome, 6–12 July 2009

  • Alberts B, Klees R (2004) A comparison of methods for the inversion of airborne gravity data. J Geodesy 78:55–65. https://doi.org/10.1007/s00190-003-0366-x

    Article  Google Scholar 

  • Ardalan AA, Karimi R (2013) On correct application of one-step inversion of gravity data. Stud Geophys Geod 57:401–425. https://doi.org/10.1007/s11200-012-0443-9

    Article  Google Scholar 

  • Bauer F, Lukas MA (2011) Comparing parameter choice methods for regularization of ill-posed problems. Math Comput Simul 81:1795–1841. https://doi.org/10.1016/j.matcom.2011.01.016

    Article  Google Scholar 

  • Duquenne H (2006) A data set to test geoid computation methods. In: 1st International symposium of the international gravity field service, pp 61–65, Harita Dergisi, Istanbul

  • Foroughi I, Vanicek P, Kingdon RW, Sheng MB, Santos M (2015) Assessment of Discontinuity of Helmert’s Gravity Anomalies on the Geoid. AGU-GAC-MAC-CGU Joint Assembly, Montreal, Canada. https://doi.org/10.13140/RG.2.1.2506.3524

  • Foroughi I, Vaníček P, Novák P, Kingdon RW, Sheng M, Santos MC (2017) Optimal combination of satellite and terrestrial gravity data for regional geoid determination using Stokes–Helmert’s method, the Auvergne test case. Springer, Berlin, pp 1–7. https://doi.org/10.1007/1345_2017_22

    Book  Google Scholar 

  • Foroughi I, Vaníček P, Kingdon RW, Goli M, Sheng M, Afrashteh Y, Novák P, Santos M (2018) Sub-centimetre geoid. J Geodesy 1:1. https://doi.org/10.1007/s00190-018-1208-1

    Article  Google Scholar 

  • Forsberg, R. (2010). Geoid determination in the mountains using ultra-high resolution spherical harmonic models—the Auvergne case. The apple of the knowledge, In: Honor of Professor Emeritus Demetrius N. Arabelos, pp 101–111

  • Goli M, Najafi-Alamdari M (2011) Planar, spherical and ellipsoidal approximations of Poisson’s integral in near zone. J Geod Sci 1:17–24. https://doi.org/10.2478/v10156-010-0003-6

    Article  Google Scholar 

  • Goli M, Najafi-Alamdari M, Vaníček P (2011) Numerical behaviour of the downward continuation of gravity anomalies. Stud Geophys Geod 55(2):191–202. https://doi.org/10.1007/s11200-011-0011-8

    Article  Google Scholar 

  • Goli M, Foroughi I, Novák P (2018) On estimation of stopping criteria for iterative solutions of gravity downward continuation. Can J Earth Sci 55(4):397–405. https://doi.org/10.1139/cjes-2017-0208

    Article  Google Scholar 

  • Goli M, Foroughi I, Novák P (2019) The effect of the noise, spatial distribution, and interpolation of ground gravity data on uncertainties of estimated geoidal heights. Stud Geophys Geod. https://doi.org/10.1007/s11200-018-1013-6

    Article  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys r Res 76:1905–1915. https://doi.org/10.1029/JB076i008p01905

    Article  Google Scholar 

  • Huang J (2002) Computational methods for the discrete downward continuation of the Earth gravity and effedts of lateral topographical mass density variation on gravity and the geoid. University of New Brunswick, Fredericton, Canada

  • Huang J, Pagiatakis SD, Véronneau M (2001) Truncation of Poisson’s integral in upward and downward continuations of the Earth’s gravity. In: Sideris MG (eds) Gravity, geoid and geodynamics 2000. International Association of Geodesy Symposia Series 123:323–327. https://doi.org/10.1007/978-3-662-04827-6_54

  • Huang J, Sideris MG, Vaníček P, Tziavos IN (2003) Numerical investigation of downward continuation techniques for gravity anomalies. Bollettino di Geodesia e Scienze Affini 62(1):33–48

    Google Scholar 

  • Janák J, Vaníček P, Foroughi I, Kingdon R, Sheng M, Santos M (2017) Computation of precise geoid model of Auvergne using current UNB Stokes–Helmert’s approach. Contrib Geophys Geodesy 47:201–229. https://doi.org/10.1515/congeo-2017-0011

    Article  Google Scholar 

  • Jarvis A, Guevara E, Reuter HI, Nelson AD (2008) Hole-filled SRTM for the globe: version 4: data grid. Web publication. http://srtm.csi.cgiar.org/

  • Kingdon R, Vaníček P (2011) Poisson downward continuation solution by the Jacobi method. J Geod Sci 1:74–81. https://doi.org/10.2478/v10156-010-0009-0

  • Klees R (1996) Numerical calculation of weakly singular surface integrals. J Geodesy 70:781–797. https://doi.org/10.1007/BF00867156

    Article  Google Scholar 

  • Martinec Z (1996) Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J Geodesy 70:805–828. https://doi.org/10.1007/s001900050069

    Article  Google Scholar 

  • Mayer-Gürr T, Pail R, Gruber T, Fecher T, Rexer M, Schuh W-D, Kusche J, Brockmann J-M, Rieser D, Zehentner N, Kvas A, Klinger B, Baur O, Höck E, Krauss S, Jäggi A (2015) The combined satellite gravity field model GOCO05 s. Presented at the EGU Assembly 2015, Vienna

  • Novák P (2003) Geoid determination using one-step integration. J Geodesy 77:193–206. https://doi.org/10.1007/s00190-003-0314-9

    Article  Google Scholar 

  • Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw 8:43–71. https://doi.org/10.1145/355984.355989

    Article  Google Scholar 

  • Paul (1973) A method of evaluating the truncation error coefficients for geoidal height. Bull Geodesque 110(1):413–425

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res: Solid Earth. https://doi.org/10.1029/2011jb008916

    Article  Google Scholar 

  • Saleh J, Li X, Wang YM, Roman DR, Smith DA (2013) Error analysis of the NGS’ surface gravity database. J Geodesy 87:203–221. https://doi.org/10.1007/s00190-012-0589-9

  • Sun W (2005) On discrete schemes in downward continuation of gravity. In: Sansò F (ed) A window on the future of geodesy. International association of geodesy symposia series, vol 128. Springer, Berlin, pp 512–517

    Google Scholar 

  • Tenzer R, Novák P (2008) Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data. Stud Geophys Geod 52:53–70. https://doi.org/10.1007/s11200-008-0005-3

    Article  Google Scholar 

  • Tenzer R, Novák P, Janák J, Huang J, Najafi-Almadari M, Vajda P, Santos M (2003) A review of the UNB Stokes–Helmert approach for precise geoid determination. In: Santos M (ed) Honoring the academic life of Petr Vaníček. UNB, Frederiction

    Google Scholar 

  • Valty P, Duquenne H, Panet I (2012) Auvergne dataset: testing several geoid computation methods. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for planet earth. International association of geodesy symposia series, vol 136. Springer, Berlin, pp 465–472

    Google Scholar 

  • Vaníček P, Sjoberg LE (1991) Reformulation of Stokes’s theory for higher than second-degree reference field and a modification of integration kernels. J Geophys Res 96(B4):6529–6539

    Article  Google Scholar 

  • Vaníček P, Martinec Z (1994) The Stokes-Helmert scheme for the evaluation of a precise geoid. Manuscr Geod 19:119–128

  • Vaníček P, Sun W, Ong P, Martinec Z, Najafi M, Vajda P, Ter Horst B (1996) Downward continuation of Helmert’s gravity. J Geodesy 71:21–34

    Article  Google Scholar 

  • Vaníček P, Huang J, Novák P, Pagiatakis SD, Véronneau M, Martinec Z, Featherstone WE (1999) Determination of the boundary values for the Stokes–Helmert problem. J Geodesy 73(4):180–192

  • Vaníček P, Novák P, Sheng M, Kingdon R, Janák J, Foroughi I, Martinec Z, Santos M (2017) Does Poisson’s downward continuation give physically meaningful results? Stud Geophys Geod 61:412–428. https://doi.org/10.1007/s11200-016-1167-z

    Article  Google Scholar 

  • Yildiz H, Forsberg R, Ågren J, Tscherning C, Sjöberg LE (2012) Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geod Sci 2:53–64. https://doi.org/10.2478/v10156-011-0024-9

    Article  Google Scholar 

Download references

Acknowledgements

Pavel Novák was supported by the Project 18-06943S of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Foroughi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goli, M., Foroughi, I. & Novák, P. Application of the one-step integration method for determination of the regional gravimetric geoid. J Geod 93, 1631–1644 (2019). https://doi.org/10.1007/s00190-019-01272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01272-8

Keywords

Navigation