Skip to main content
Log in

Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d’Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allende-Alba G, Montenbruck O (2016) Robust and precise baseline determination of distributed spacecraft in LEO. Adv Space Res 57(1):46–63. https://doi.org/10.1016/j.asr.2015.09.034

    Article  Google Scholar 

  • Aschbacher J, Milagro-Pérez MP (2012) The European Earth monitoring (GMES) programme: status and perspectives. Remote Sens Environ 120:3–8. https://doi.org/10.1016/j.rse.2011.08.028

    Article  Google Scholar 

  • Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46(12):1484–1496. https://doi.org/10.1016/j.asr.2010.05.015

    Article  Google Scholar 

  • Bertiger WI, Bar-Sever YE, Christensen EJ, Davis ES, Guinn JR, Haines BJ, Ibanez-Meier RW, Jee JR, Lichten SM, Melbourne WG, Muellerschoen RJ, Munson TN, Vigue Y, Wu SC, Yunck TP, Schutz BE, Abusali PAM, Rim HJ, Watkins MM, Willis P (1994) GPS precise tracking of TOPEX/POSEIDON: results and implications. J Geophys Res Oceans 99(12):24,449–24,464. https://doi.org/10.1029/94JC01171

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337. https://doi.org/10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Betz J (2016) Engineering satellite-based navigation and timing–global navigation satellite systems, signals, and receivers. Wiley-IEEE Press, New York

    Google Scholar 

  • Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geod 88(11):1047–1060. https://doi.org/10.1007/s00190-014-0742-8

    Article  Google Scholar 

  • Cerri L, Berthias J, Bertiger W, Haines B, Lemoine F, Mercier F, Ries J, Willis P, Zelensky N, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Marine Geod 33(S1):379–418. https://doi.org/10.1080/01490419.2010.488966

    Article  Google Scholar 

  • Doornbos E (2012) Thermospheric density and wind determination from satellite dynamics. Springer, Heidelberg

    Book  Google Scholar 

  • Eanes RJ, Bettadpur S (1996) The CSR 3.0 global ocean tide model: diurnal and semi-diurnal ocean tides from TOPEX/POSEIDON altimetry, CSR-TM-96-05, University of Texas at Austin

  • Fernández J, Fernández C, Féménias P, Peter H (2016) The Copernicus Sentinel-3 mission. In: ILRS workshop 2016, ILRS, pp 1–4

  • Fernández Martìn C (2016) Sentinel-3A properties for GPS POD, GMV-GMESPOD-TN-0027, v1.2

  • Fernández Martìn C (2017) RINEX generation strategies for Sentinel, GMV-GMESPOD-TN-0030, v1.2

  • Fletcher K (ed) (2012) Sentinel-3 -ESA’s global land and ocean mission for GMES operational services. ESA, Noordwijk

  • Flohrer C, Otten M, Springer T, Dow J (2011) Generating precise and homogeneous orbits for Jason-1 and Jason-2. Adv Space Res 48(1):152–172. https://doi.org/10.1016/j.asr.2011.02.017

    Article  Google Scholar 

  • Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Eineder M (2016) Model improvements and validation of TerraSAR-X precise orbit determination. J Geod 91(5):547–562. https://doi.org/10.1007/s00190-016-0982-x

    Article  Google Scholar 

  • Hauschild A (2017) Basic observation equations. In: Teunissen P, Montenbruck O (eds) Springer handbook of global navigation satellite systems, chap 19. Springer, Heidelberg, pp 561–582

    Chapter  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, Wien

    Google Scholar 

  • IGS RINEX WG, RTCM-SC104 (2015) RINEX - the receiver independent exchange format, v. 3.03

  • Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. https://doi.org/10.1016/j.asr.2007.03.012

    Article  Google Scholar 

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12):1145–1162. https://doi.org/10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Jäggi A, Dahle C, Arnold D, Bock H, Meyer U, Beutler G, van den IJssel J (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233. https://doi.org/10.1016/j.asr.2015.10.035

    Article  Google Scholar 

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. In: AIAA/AAS astrodynamics conference, pp 577–587

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x

    Article  Google Scholar 

  • Le Roy Y, Deschaux-Beaume M, Mavrocordatos C, Aguirre M, Heliere F (2007) SRAL SAR radar altimeter for Sentinel-3 mission. In: International geoscience and remote sensing symposium, IGARSS 2007, pp 219–222

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geod 86(11):991. https://doi.org/10.1007/s00190-012-0559-2

    Article  Google Scholar 

  • Luthcke S, Zelensky N, Rowlands D, Lemoine F, Williams T (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data special issue: Jason-1 calibration/validation. Marine Geod 26(3–4):399–421. https://doi.org/10.1080/714044529

    Article  Google Scholar 

  • Mayer-Gürr T, Pail R, Schuh WD, Kusche J, Baur O, Jäggi A (2012) The new combined satellite only model GOCO03s. In: International symposium on gravity, geoid and height systems, Venice, Italy

  • Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. https://doi.org/10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  • Melbourne W (1985) The case for ranging in GPS based geodetic systems. In: Goad C (ed) Proceedings of the 1st international symposium on precise positioning with the Global Positioning System, NOAA, pp 373–386

  • Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31(14):L14,602. https://doi.org/10.1029/2004GL020308

    Article  Google Scholar 

  • Milani A, Nobili AM, Farinella P (1987) Non-gravitational perturbations and satellite geodesy. Adam Hilger, Bristol

    Google Scholar 

  • Misra P, Enge P (2006) Global Positioning System: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, MA

    Google Scholar 

  • Montenbruck O, Neubert R (2011) Range correction for the Cryosat and GOCE laser retroreflector arrays, DLR/GSOC TN 11-01. https://ilrs.cddis.eosdis.nasa.gov/docs/TN_1101_IPIE_LRA_v1.0.pdf

  • Montenbruck O, Van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271. https://doi.org/10.1016/j.ast.2005.01.003

    Article  Google Scholar 

  • Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12(4):289–299. https://doi.org/10.1007/s10291-008-0091-2

    Article  Google Scholar 

  • Öhgren M, Bonnedal M, Ingvarson P (2011) GNSS antenna for precise orbit determination including s/c interference predictions. In: Proceedings of the 5th European conference on antennas and propagation (EUCAP), pp 1990–1994

  • Pearlman MR, Degnan JJ, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Peter H, Jäggi A, Fernández J, Escobar D, Ayuga F, Arnold D, Wermuth M, Hackel S, Otten M, Simons W, Visser P, Hugentobler U, Féménias P (2017) Sentinel-1A—first precise orbit determination results. Adv Space Res. https://doi.org/10.1016/j.asr.2017.05.034

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res https://doi.org/10.1029/2002JA009430

  • Priestley KJ, Smith GL, Thomas S, Cooper D, Lee RB, Walikainen D, Hess P, Szewczyk ZP, Wilson R (2011) Radiometric performance of the CERES Earth radiation budget climate record sensors on the EOS Aqua and Terra spacecraft through April 2007. J Atmos Ocean Tech 28(1):3–21. https://doi.org/10.1175/2010JTECHA1521.1

    Article  Google Scholar 

  • Ray R (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, NASA technical memorandum 209478

  • Rebischung P (2012) IGb08: an update on IGS08, IGSMAIL-6663. https://igscb.jpl.nasa.gov/pipermail/igsmail/2012/007853.html

  • Rebischung P (2016) Upcoming switch to IGS14/igs14.atx, IGSMAIL-7399. https://igscb.jpl.nasa.gov/pipermail/igsmail/2016/008589.html

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. https://doi.org/10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F (2016) Absolute IGS antenna phase center model igs08. atx: status and potential improvements. J Geod 90(4):343–364. https://doi.org/10.1007/s00190-015-0876-3

    Article  Google Scholar 

  • Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equations: the initial value problem. W. H. Freeman, San Francisco

    Google Scholar 

  • Silvestrin P, Cooper J (2000) Method of processing of signals of a satellite positioning system, US patent 6157341

  • Sinander P, Silvestrin P (1997) The advanced GPS Glonass ASIC for spacecraft control and earth science applications. In: Proceedings of the data systems in aerospace—DASIA 97, ESA SP-409, vol 409, pp 287–294

  • Sutton EK (2009) Normalized force coefficients for satellites with elongated shapes. J Spacecr Rockets 46(1):112–116. https://doi.org/10.2514/1.40940

    Article  Google Scholar 

  • Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47–56. https://doi.org/10.5194/adgeo-1-47-2003

    Article  Google Scholar 

  • Swatschina P, Montenbruck O, Bock H, Jäggi A (2011) Accuracy assessment of GOCE orbit solutions. In: 4th International GOCE user workshop

  • Tapley B, Schutz B, Born GH (2004) Statistical orbit determination. Academic Press, London

    Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1):65–82. https://doi.org/10.1007/BF00863419

    Article  Google Scholar 

  • van den IJssel J, Encarnação J, Doornbos E, Visser P (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055. https://doi.org/10.1016/j.asr.2015.06.002

    Article  Google Scholar 

  • van den IJssel J, Forte B, Montenbruck O (2016) Impact of Swarm GPS receiver updates on POD performance. Earth Planets Space 68(1):1–17. https://doi.org/10.1186/s40623-016-0459-4

    Article  Google Scholar 

  • Woo KT (2000) Optimum semicodeless carrier-phase tracking of L2. Navigation 47(2):82–99. https://doi.org/10.1002/j.2161-4296.2000.tb00204.x

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj G, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18(2):91–98

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements. In: Goad C (ed) Proceedings of the 1st international symposium on precise positioning with the Global Positioning System, NOAA, pp 403–412

  • Xu G (2010) GPS—theory, algorithms, and applications, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

Sentinel-3 flight and pre-mission test data used in this study have kindly been made available by the European Commission (EC) and the European Space Agency (ESA) as part of the Copernicus program. We also appreciate the continued technical support received by GMV and the CPOD Quality Working Group within the frame of the Copernicus Precise Orbit Determination (CPOD) service. Our study builds extensively on GPS orbit, clock, and bias products facilitating ambiguity resolution, which are made available by the joint CNES/CLS (Centre National d’Études Spatiales / Collecte Localisation Satellites) analysis center of the International GNSS Service (IGS). Provision of this community service is greatly appreciated and acknowledged. The authors are, furthermore, grateful to the International Satellite Laser Ranging Service (ILRS) for their continued effort to collect and publicly provide the SLR observations of Sentinel-3A and other LEO satellites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Montenbruck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenbruck, O., Hackel, S. & Jäggi, A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geod 92, 711–726 (2018). https://doi.org/10.1007/s00190-017-1090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1090-2

Keywords

Navigation