Skip to main content
Log in

General distribution of consumers in pure Hotelling games

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

A pure Hotelling game is a spatial competition between a finite number of players who simultaneously select a location in order to attract as many consumers as possible. In this paper, we study the case of a general distribution of consumers on a network generated by a metric graph. Because players do not compete on price, the continuum of consumers shop at the closest player’s location. If the number of sellers is large enough, we prove the existence of an approximate equilibrium in pure strategies, and we construct it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Respectively, we define \([x_1,x_2[\), \(]x_1,x_2]\), and \(]x_1,x_2[\) as the set of \(\{(u,v,t)\}\) for \(t\in [t_1,t_2[\), \(]t_1,t_2]\), or \(]t_1,t_2[\).

  2. Remember we can assume without loss of generality that all vertices have degree different from 2, as explained in Sect. 2.1.

  3. Remark that \({{\mathrm{Card}}}(E_L)+\sum _{e \in E} I_e + 2 \sum _{e \in E} \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil \le \Omega (\epsilon _1)\) so this constrain vanishes when we ask n to be larger than \(N(\epsilon _1)\)

  4. We consider here only ties on a set with a strictly positive measure.

References

  • Anderson SP, Goeree JK, Ramer R (1997) Location, location, location. J Econ Theory 77(1):102–127

    Article  Google Scholar 

  • Eaton BC, Lipsey RG (1975) The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev Econ Stud 42:27–49

    Article  Google Scholar 

  • Fournier G, Scarsini M (2018) Location games on networks: existence and efficiency of equilibria. Math Oper Res. https://doi.org/10.1287/moor.2017.0921

  • Hotelling H (1929) Stability in competition. Springer, Berlin

    Book  Google Scholar 

  • Lederer PJ, Hurter AP Jr (1986) Competition of firms: discriminatory pricing and location. Econom J Econom Soc 54:623–640

    Google Scholar 

  • Montes-Rojas G (2015) Spatial competition and the location of firms with non-uniformly distributed costumers. Revista de Economía Política de Buenos Aires 14:83–107

    Google Scholar 

  • Neven DJ (1986) On Hotelling’s competition with non-uniform customer distributions. Econ Lett 21(2):121–126

    Article  Google Scholar 

  • Núñez M, Scarsini M (2016) Competing over a finite number of locations. Econ Theory Bull 4(2):125–136

    Article  Google Scholar 

  • Núñez M, Scarsini M (2017) Large spatial competition. In: Mallozzi L, D’Amato E, Pardalos PM (eds) Spatial interaction models: facility location using game theory. Springer, Berlin, pp 225–246

    Chapter  Google Scholar 

  • Osborne MJ, Pitchik C (1986) The nature of equilibrium in a location model. Int Econ Rev 27:223–237

    Article  Google Scholar 

  • Pálvölgyi D (2011) Hotelling on graphs. Technical report, Mimeo

  • Peters H, Schröder M, Vermeulen D (2018) Hotelling’s location model with negative network externalities. Int J Game Theory 47:811–837

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks two referees, the Associate Editor, and the Editor for their useful suggestions. Support from the ANR Labex IAST is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Fournier.

Additional information

This research was supported by the ISF Grant 1585/15.

Appendix

Appendix

Lemma 19

Let \(\epsilon _1 \in (0,\frac{\min \lambda _e K}{2})\), \(\hat{e} \in E\) and \(\hat{i} \in \{0,\ldots ,I_e-1\}\), then \(\Omega (\epsilon _1) \ge h(\frac{\ell _{\hat{e}}g_{\hat{e}}^{\hat{i}}}{10},\epsilon _1)\) .

Proof

It follows from the definition of \(\ell _e\) and the inequality \(m-\epsilon _1 \le g_e \le M + \epsilon _1\) that:

$$\begin{aligned} h\left( \frac{\ell _{\hat{e}}g_{\hat{e}}^{\hat{i}}}{8},\epsilon _1\right)&= 2 {{\mathrm{Card}}}(E_L) + \sum _e \sum _i \left\lceil \frac{10}{2} \frac{\ell _e(\epsilon _1) g_e^i}{\ell _{\hat{e}(\epsilon _1)}g_{\hat{e}}^{\hat{i}}} \right\rceil + 2 \sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil \\&\le 2 {{\mathrm{Card}}}(E_L) + \sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil \left\lceil 5 \frac{\lambda _e \left\lceil \frac{\lambda _{\hat{e}}K}{2 \epsilon _1}\right\rceil (M+\epsilon _1)}{\lambda _{\hat{e}} \left\lceil \frac{\lambda _{e}K}{2 \epsilon _1}\right\rceil (m-\epsilon _1)} \right\rceil + 2 \sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil . \end{aligned}$$

Moreover, because \(x \le \left\lceil x \right\rceil \le x+1\) we also have:

$$\begin{aligned} h\left( \frac{\ell _{\hat{e}}g_{\hat{e}}^{\hat{i}}}{8},\epsilon _1\right)&\le 2 {{\mathrm{Card}}}(E_L) + \sum _e \left( 5 \frac{\lambda _e (\frac{\lambda _{\hat{e}}K}{2 \epsilon _1}+1) (M+\epsilon _1)}{\lambda _{\hat{e}} (m-\epsilon _1)} \right) +3 \sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil \\&\le 2 {{\mathrm{Card}}}(E_L) + \frac{5}{2} \sum _e \frac{\lambda _e K (M+\epsilon _1)}{\epsilon _1 (m-\epsilon _1)} +\sum _e 5 \frac{\lambda _e}{\lambda _{\hat{e}}}\frac{M+\epsilon _1}{m-\epsilon _1} \\&\quad +3 \sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil . \\ \end{aligned}$$

Finally, we use the notation \(L:= \sum _e \lambda _e\) and the fact that \(\sum _e \left\lceil \frac{\lambda _e K}{2 \epsilon _1} \right\rceil \le {{\mathrm{Card}}}(E)+\frac{L K}{2 \epsilon _1}\).

$$\begin{aligned} h\left( \frac{\ell _{\hat{e}}g_{\hat{e}}^{\hat{i}}}{8},\epsilon _1\right)&\le 2 {{\mathrm{Card}}}(E_L) + \frac{ 5 L K (M+\epsilon _1)}{2 \epsilon _1 (m-\epsilon _1)} + \frac{5 L}{\min \lambda _e}\frac{M+\epsilon _1}{m-\epsilon _1} +3 {{\mathrm{Card}}}(E) \\&\quad + \frac{3 L K}{2 \epsilon _1} \\&\le 5 {{\mathrm{Card}}}(E) + \frac{5 L (M+\epsilon _1)}{(m-\epsilon _1)}\left( \frac{K}{2 \epsilon _1} + \frac{1}{\min \lambda _e}\right) + \frac{3 L K}{2 \epsilon _1} \le \Omega (\epsilon _1). \\ \end{aligned}$$

\(\square \)

Lemma 20

If \(n \ge \Omega (\epsilon _1)\) then \(\overline{\theta } \le \frac{\epsilon _1 (M+ \epsilon _1)}{4K}\)

Proof

Remember that \(\overline{\theta }\) was defined in Eq. (8) as a real number such that \(n \le h(\overline{\theta }) \le n+ \sum _{e \in E} I_e\). We suppose here that \(n \ge \Omega (\epsilon _1)\) and we have, thanks to Lemma 19, \(\Omega (\epsilon _1) \ge h(\frac{\ell _e g_e^i}{10},\epsilon _1)\). Putting all these inequalities together gives:

$$\begin{aligned} h(\overline{\theta },\epsilon _1) \ge h\left( \frac{\ell _e g_e^i}{10},\epsilon _1\right) \end{aligned}$$

Because h is a decreasing function, and replacing \(\ell \) by its definition in Definition 10, we get:

$$\begin{aligned} \overline{\theta } \le \frac{\lambda _e g_e^i}{10 \left\lceil \frac{\lambda _e K}{2 \epsilon _1}\right\rceil } \le \frac{\epsilon _1 g_e^i}{5K} \end{aligned}$$

Using the inequality \(g_e^i \le M+\epsilon \) we obtain:

$$\begin{aligned} \overline{\theta } \le \frac{\epsilon _1 (M+ \epsilon _1)}{5K}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, G. General distribution of consumers in pure Hotelling games. Int J Game Theory 48, 33–59 (2019). https://doi.org/10.1007/s00182-018-0648-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-018-0648-4

Keywords

JEL Classification

Navigation