Skip to main content
Log in

A mean field game approach to relative investment–consumption games with habit formation

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper studies an optimal investment–consumption problem for competitive agents with exponential or power utilities and a common finite time horizon. Each agent regards the average of habit formation and wealth from all peers as benchmarks to evaluate the performance of her decision. We formulate the n-agent game problems and the corresponding mean field game problems under the two utilities. One mean field equilibrium is derived in a closed form in each problem. In each problem with n agents, an approximate Nash equilibrium is then constructed using the obtained mean field equilibrium when n is sufficiently large. The explicit convergence order in each problem can also be obtained. In addition, we provide some numerical illustrations of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abel, A.B.: Asset prices under habit formation and catching up with the joneses. Am. Econ. Rev. 80(2), 38–42 (1990)

    MathSciNet  Google Scholar 

  2. Abel, A.B.: Risk premia and term premia in general equilibrium. J. Monet. Econ. 43(1), 3–33 (1999). https://doi.org/10.1016/S0304-3932(98)00039-7

    Article  Google Scholar 

  3. Angoshtari, B., Bayraktar, E., Young, V.R.: Optimal consumption under a habit-formation constraint: the deterministic case. SIAM J. Financ. Math. 14(2), 557–597 (2023). https://doi.org/10.1137/22M1471560

    Article  MathSciNet  Google Scholar 

  4. Bielagk, J., Lionnet, A., Dos Reis, G.: Equilibrium pricing under relative performance concerns. SIAM J. Financ. Math. 8(1), 435–482 (2017). https://doi.org/10.1137/16M1082536

    Article  MathSciNet  Google Scholar 

  5. Bo, L., Wang, S., Yu, X.: A mean field game approach to equilibrium consumption under external habit formation. Preprint, available at arXiv:2206.13341 (2022)

  6. Campbell, J.Y., Cochrane, J.H.: By force of habit: a consumption-based explanation of aggregate stock market behavior. J. Polit. Econ. 107(2), 205–251 (1999)

    Article  Google Scholar 

  7. Constantinides, G.M.: Habit formation: a resolution of the equity premium puzzle. J. Polit. Econ. 98(3), 519–543 (1990)

    Article  Google Scholar 

  8. Detemple, J.B., Zapatero, F.: Asset prices in an exchange economy with habit formation. Econometrica 59(6), 1633–1657 (1991)

    Article  Google Scholar 

  9. dos Reis, G., Platonov, V.: Forward utility and market adjustments in relative investment-consumption games of many players. SIAM J. Financ. Math. 13(3), 844–876 (2022). https://doi.org/10.1137/20M138421X

    Article  MathSciNet  Google Scholar 

  10. Espinosa, G.-E., Touzi, N.: Optimal investment under relative performance concerns. Math. Finance 25(2), 221–257 (2015). https://doi.org/10.1111/mafi.12034

    Article  MathSciNet  Google Scholar 

  11. Fernández-Villaverde, J., Krueger, D.: Consumption over the life cycle: facts from consumer expenditure survey data. Rev. Econ. Stat. 89(3), 552–565 (2007)

    Article  Google Scholar 

  12. Guanxing, F.: Mean Field Portfolio Games with Consumption. Math. Financ. Econ. 17, 79–99 (2023). https://doi.org/10.1007/s11579-022-00328-2

    Article  MathSciNet  Google Scholar 

  13. Guanxing, F., Zhou, C.: Mean field portfolio games. Finance Stochast. 27, 189–231 (2023). https://doi.org/10.1007/s00780-022-00492-9

    Article  MathSciNet  Google Scholar 

  14. Gali, J.: Keeping up with the joneses: consumption externalities, portfolio choice, and asset prices. J. Money Credit Bank. 26(1), 1–8 (1994)

    Article  Google Scholar 

  15. Gómez, J.-P.: The impact of keeping up with the joneses behavior on asset prices and portfolio choice. Finance Res. Lett. 4(2), 95–103 (2007). https://doi.org/10.1016/j.frl.2007.01.002

    Article  Google Scholar 

  16. Hamaguchi, Y.: Time-inconsistent consumption-investment problems in incomplete markets under general discount functions. SIAM J. Control. Optim. 59(3), 2121–2146 (2021). https://doi.org/10.1137/19M1303782

    Article  MathSciNet  Google Scholar 

  17. Hu, R., Zariphopoulou, T.: N-player and mean-field games in itô-diffusion markets with competitive or homophilous interaction, pp. 209–237. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98519-6_9

  18. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    Article  MathSciNet  Google Scholar 

  19. Lacker, D., Soret, A.: Many-player games of optimal consumption and investment under relative performance criteria. Math. Financ. Econ. 14, 263–281 (2020). https://doi.org/10.1007/s11579-019-00255-9

    Article  MathSciNet  Google Scholar 

  20. Lacker, D., Zariphopoulou, T.: Mean field and n-agent games for optimal investment under relative performance criteria. Math. Finance 29(4), 1003–1038 (2019). https://doi.org/10.1111/mafi.12206

    Article  MathSciNet  Google Scholar 

  21. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007). https://doi.org/10.1007/s11537-007-0657-8

    Article  MathSciNet  Google Scholar 

  22. Liu, H.: Optimal consumption and investment with transaction costs and multiple risky assets. J. Finance 59(1), 289–338 (2004)

    Article  Google Scholar 

  23. Ma, G., Zhu, S.-P.: Optimal investment and consumption under a continuous-time cointegration model with exponential utility. Quant. Finance 19(7), 1135–1149 (2019). https://doi.org/10.1080/14697688.2019.1570317

    Article  MathSciNet  Google Scholar 

  24. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  25. Thurow, L.C.: The optimum lifetime distribution of consumption expenditures. Am. Econ. Rev. 59(3), 324–330 (1969)

    Google Scholar 

  26. Vayanos, D.: Transaction costs and asset prices: a dynamic equilibrium model. Rev. Financ. Stud. 11(1), 1–58 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 12271290 and 11871036). The authors also thank the members of the group of Actuarial Science and Mathematical Finance at the Department of Mathematical Sciences, Tsinghua University for their feedbacks and useful conversations. We are also particularly grateful to the two anonymous referees and the Editor whose suggestions greatly improve the manuscript’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Some estimations for the fixed point system (3.42)

In this section, we make some prior estimations on \(\left( {\overline{X}}_{T},{\hat{Z}}\right) \) in the system (3.42).

Proposition A.1

For any given \({\hat{Z}}\in {\mathcal {C}}_{T,+}\), there exists a unique solution \({\overline{X}}^{{\hat{Z}}}_{T}\) to the following equation

$$\begin{aligned} {\overline{X}}_{T}=C_{2}\exp \left\{ -\int _{0}^{T}\sum _{k=1}^{K}\exp \left( \frac{\theta _{k} p_{k}\delta }{1-p_{k}}t\right) \left( {\hat{Z}}_{t}\right) ^{\frac{\theta _{k}p_{k}}{p_{k}-1}}{\hat{G}}_{k}(t,{\overline{X}}_{T},{\hat{Z}})dt\right\} , \end{aligned}$$
(A.1)

where \(C_{2}\) is defined in (3.43). Moreover, we have the following estimation:

$$\begin{aligned} C_{1}\le {\overline{X}}^{{\hat{Z}}}_{T}\le C_{2}, \end{aligned}$$
(A.2)

where \(C_{1}\) and \(C_{2}\) are two positive constants only depending on \(\left\{ o_{k}\right\} _{k=1}^{K}, z_{0}, \delta \) and T.

Proof

As the LHS of (A.1) is strictly increasing with respect to \({\overline{X}}_{T}\) and the RHS of (A.1) is strictly decreasing with respect to \({\overline{X}}_{T}\), the equation (A.1) has at most one solution.

When \({\overline{X}}_{T}=0\), we get \(LHS<RHS\); When \({\overline{X}}_{T}\) tends to infinity, we get \(LHS>RHS\). Hence, for any given \({\hat{Z}}\in {\mathcal {C}}_{T,+}\), there exists a unique solution \({\overline{X}}^{{\hat{Z}}}_{T}\) to (A.1).

It is obviously to see that \({\overline{X}}^{{\hat{Z}}}_{T}\le C_{2}\). Note that

$$\begin{aligned} {\hat{G}}_{k}(s,{\overline{X}}_{T},{\hat{Z}})\le e^{ a_{k}(s-T)}\left( {\overline{X}}_{T}\right) ^{\frac{p_{k}\theta _{k}}{1-p_{k}}}, \end{aligned}$$
(A.3)

we have from (A.1)

$$\begin{aligned} \begin{aligned} {\overline{X}}_{T}&\ge C_{2}\exp \left\{ -\int _{0}^{T}\sum _{k=1}^{K}\exp \left( \frac{\theta _{k} p_{k}\delta }{1-p_{k}}s\right) z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}e^{ a_{k}(s-T)}\left( {\overline{X}}_{T}\right) ^{\frac{p_{k}\theta _{k}}{1-p_{k}}}ds\right\} \\&= C_{2}\exp \left\{ -\sum _{k=1}^{K}D_{k}\left( {\overline{X}}_{T}\right) ^{\frac{p_{k}\theta _{k}}{1-p_{k}}}\right\} , \end{aligned} \end{aligned}$$
(A.4)

where \(D_{k}:=z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}e^{-a_{k}T}\int _{0}^{T}\exp \left[ (\frac{\theta _{k}p_{k}\delta }{1-p_{k}}+a_{k})s\right] ds\). Then it is straightforward to get \({\overline{X}}_{T}>C_{1}\), where \(C_{1}\) is the root of the following equation

$$\begin{aligned} C_{1} = C_{2}\exp \left( -\sum _{k=1}^{K}D_{k}C_{1}^{\frac{p_{k}\theta _{k}}{1-p_{k}}}\right) , \end{aligned}$$
(A.5)

which completes the proof. \(\square \)

Proposition A.2

If there exists a solution \(\left( {\overline{X}}_{T},{\hat{Z}}\right) \) of (3.42), it holds that

$$\begin{aligned} z_{0}\le {\hat{Z}}_{t}\le M(t)\le M(T),\quad \, \forall t \in [0,T], \end{aligned}$$

where \(M(\cdot )\) is a positive increasing function only depending on \(\left( x_{0},z_{0}, \delta ,T\right) \) and \(\left\{ o_{k}\right\} _{k=1}^{K}\).

Proof

It is enough to find a function \(M(\cdot )\) and prove \({\hat{Z}}_{t}\le M(t)\) for all \(t\in [0,T]\).

We have from (3.42)

$$\begin{aligned} \begin{aligned} d{\hat{Z}}_{t}&=\delta \sum _{k=1}^{K}e^{\beta _{k}t}\left( {\hat{Z}}_{t}\right) ^{\frac{\theta _{k}p_{k}}{p_{k}-1}}{\hat{G}}_{k}(t,{\overline{X}}_{T},{\hat{Z}}){\hat{f}}_{k}(t,{\overline{X}}_{T},{\hat{Z}})F(\left\{ k\right\} )dt\\&\le \delta x_{0}\sum _{k=1}^{K}e^{\beta _{k}t}z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}e^{a_{k}(t-T)}{\overline{X}}_{T}^{\frac{p_{k}\theta _{k}}{1-p_{k}}}\exp \left\{ \frac{\mu _{k}^{2}}{(1-p_{k})\sigma _{k}^{2}}t\right\} dt\\&\le \delta x_{0}\sum _{k=1}^{K}e^{-a_{k}T}z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}C_{2}^{\frac{p_{k}\theta _{k}}{1-p_{k}}}\exp \left\{ \left( \beta _{k}+a_{k}+\frac{\mu _{k}^{2}}{(1-p_{k})\sigma _{k}^{2}}\right) t\right\} dt\\&\le EKdt,\quad \forall t\in [0,T], \end{aligned} \end{aligned}$$
(A.6)

where

$$\begin{aligned} \begin{aligned}&\beta _{k}:= \frac{\delta }{1-p_{k}}\left( 1+\theta _{k}p_{k}-p_{k}\right) ,\\&E:=\delta x_{0}\max _{1\le k\le K}e^{-a_{k}T}z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}C_{2}^{\frac{p_{k}\theta _{k}}{1-p_{k}}}\left( \max _{t\in [0,T]}\exp \left\{ \left( \beta _{k}+a_{k}+\frac{\mu _{k}^{2}}{(1-p_{k})\sigma _{k}^{2}}\right) t\right\} \right) . \end{aligned} \end{aligned}$$
(A.7)

For the first inequality, we have just used

$$\begin{aligned} \begin{aligned}&{\hat{f}}_{k}(t,{\overline{X}}_{T},{\hat{Z}})\le x_{0}\exp \left\{ \frac{\mu _{k}^{2}}{(1-p_{k})\sigma _{k}^{2}}t\right\} ,\\&{\hat{G}}_{k}(t,{\overline{X}}_{T},{\hat{Z}})\le e^{ a_{k}(t-T)}\left( {\overline{X}}_{T}\right) ^{\frac{p_{k}\theta _{k}}{1-p_{k}}},\\&{\hat{Z}}_{t}\ge z_{0}. \end{aligned} \end{aligned}$$
(A.8)

And for the second inequality, we have just used \({\overline{X}}_{T}\le C_{2}\).

Integrating (A.6), we obtain

$$\begin{aligned} {\hat{Z}}_{t}\le M(t):= EKt+z_{0}\le M(T),\quad \forall t\in [0,T]. \end{aligned}$$
(A.9)

\(\square \)

Combining (A.1) with Proposition A.2, we get a new lower bound for \({\overline{X}}_{T}\):

$$\begin{aligned} \begin{aligned} {\overline{X}}_{T}\ge C_{2}\exp&\left\{ -\int _{0}^{T}\sum _{k=1}^{K}\exp \left( \frac{\theta _{k}p_{k}\delta }{1-p_{k}}s\right) z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}\right. \\&\left. \left( \int _{s}^{T}e^{a_{k}(v-s)}\exp \left( \frac{\theta _{k}p_{k}\delta }{1-p_{k}}v\right) \left( {\hat{Z}}_{v}\right) ^{\frac{\theta _{k}p_{k}}{p_{k}-1}}dv\right) ^{-1}ds\right\} \\ \ge C_{0}\\:= C_{2}\exp&\left\{ -\int _{0}^{T}\sum _{k=1}^{K}\exp \left( \frac{\theta _{k}p_{k}\delta }{1-p_{k}}s\right) z_{0}^{\frac{\theta _{k}p_{k}}{p_{k}-1}}\right. \\&\left. \left( \int _{s}^{T}e^{a_{k}(v-s)}\exp \left( \frac{\theta _{k}p_{k}\delta }{1-p_{k}}v\right) \left( M(T)\right) ^{\frac{\theta _{k}p_{k}}{p_{k}-1}}dv\right) ^{-1}ds\right\} , \end{aligned} \end{aligned}$$
(A.10)

where the first inequality follows from

$$\begin{aligned} {\hat{G}}_{k}(s,{\overline{X}}_{T},{\hat{Z}})<\left( \int _{s}^{T}e^{a_{k}(v-s)}\exp \left( \frac{\theta _{k} p_{k}\delta }{1-p_{k}}v\right) \left( {\hat{Z}}_{v}\right) ^{\frac{\theta _{k}p_{k}}{p_{k}-1}}dv\right) ^{-1} \end{aligned}$$

and the second inequality follows from \({\hat{Z}}_{t}\le M(T)\) for any \(t\in [0,T]\).

Additional explanation to Assumption 5

Let \(i\in \left\{ 1,\ldots ,n\right\} \) and \(x_{0}\in {\mathbb {R}}\) be given. Assume that \(\Pi ^{i}:[0,T]\rightarrow {\mathbb {R}}\) is a continuous function and \(C^{i}:[0,T]\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is of an affine form:

$$\begin{aligned} C^{i}(t,x):=p^{i}(t)x+q^{i}(t),\quad (t,x)\in [0,T]\times {\mathbb {R}}, \end{aligned}$$

for some continuous functions \(p^{i},q^{i}:[0,T]\rightarrow {\mathbb {R}}\). Then, solving the following closed-loop system for \(\left( X^{*,1},\ldots ,X^{*,n},X^{i}\right) \):

$$\begin{aligned} {\left\{ \begin{array}{ll} dX^{*,j}_{t}=\left( \Pi ^{*,j}(t)\mu _{\alpha (j)}-C^{*,j}(t,X^{*,j}_{t})\right) dt+\Pi ^{*,j}(t)\sigma _{\alpha (j)}dW^{j}_{t},\quad j=1,\ldots , n,\\ dX^{i}_{t}=\left( \Pi ^{i}(t)\mu _{\alpha (i)}-C^{i}(t,X^{i}_{t})\right) dt+\Pi ^{i}(t)\sigma _{\alpha (i)}dW^{i}_{t},\\ X^{*,j}_{0}=x_{0},\quad j=1,\ldots ,n,\\ X^{i}_{0}=x_{0}, \end{array}\right. } \end{aligned}$$
(B.1)

where \(\left( \Pi ^{*,i},C^{*,i}\right) _{i=1}^{n}\) is given by (4.5), we obtain that for \(t\in [0,T]\),

$$\begin{aligned} \begin{aligned}&X^{*,j}_{t}=f^{j}(t)+\left( T+1-t\right) \frac{\mu _{\alpha (j)}}{\sigma _{\alpha (j)}}\beta _{\alpha (j)}W^{j}_{t},\quad j=1,\ldots ,n,\\&X^{i}_{t}=g^{i}(t)+e^{-\int _{0}^{t}p^{i}(s)ds}\int _{0}^{t}e^{\int _{0}^{s}p^{i}(v)dv}\Pi ^{i}(s)\sigma _{\alpha (i)}dW^{i}_{s}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&f^{j}(t):=x_{0}\frac{T+1-t}{T+1}+\left( T+1-t\right) \int _{0}^{t}\left[ \frac{\theta _{\alpha (j)}}{\left( T+1-s\right) ^{2}}\left( \int _{s}^{T}{\overline{Z}}_{v}dv+{\overline{X}}_{T}\right) -\frac{\theta _{\alpha (j)}}{T+1-s}{\overline{Z}}_{s}\right. \\&\left. \quad +\frac{1}{4}\left( \frac{\mu _{\alpha (j)}}{\sigma _{\alpha (j)}}\right) ^{2}\beta _{\alpha (j)}\frac{1}{\left( T+1-s\right) ^{2}}+\frac{3}{4}\left( \frac{\mu _{\alpha (j)}}{\sigma _{\alpha (j)}}\right) ^{2}\beta _{\alpha (j)}\right] ds,\quad j=1,\ldots ,n,\\&g^{i}(t):=x_{0}e^{-\int _{0}^{t}p^{i}(s)ds}+e^{-\int _{0}^{t}p^{i}(s)ds}\int _{0}^{t}e^{\int _{0}^{s}p^{i}(v)dv}\left( \Pi ^{i}(s)\mu _{\alpha (i)}-q^{i}(s)\right) ds. \end{aligned} \end{aligned}$$
(B.2)

It is obvious that there exists a constant M independent of j and n, such that for all \(j\in \left\{ 1,\ldots ,n\right\} \),

$$\begin{aligned} \sup _{t\in [0,T]}|f^{j}(t)|\le M. \end{aligned}$$
(B.3)

Note that

$$\begin{aligned} \begin{aligned}&\sup _{t\in [0,T]}|\Pi ^{*,i}(t)|\le \sup _{1\le k\le K}\left( \beta _{k}\frac{\mu _{k}}{(\sigma _{k})^{2}}\right) (T+1),\quad i=1,\ldots ,n,\\&C^{*,i}(t,x)=\frac{1}{T+1-t}x+h^{i}(t),\quad i=1,\ldots ,n, \end{aligned} \end{aligned}$$
(B.4)

where \(h^{i}:[0,T]\rightarrow {\mathbb {R}}\) is continuous and has a uniform bound M, to abuse the notation, which is independent of i and n, i.e., \(\sup _{t\in [0,T]}|h^{i}(t)|\le M\) for all \(i\in \left\{ 1,\ldots ,n\right\} \).

In this section, we only show

$$\begin{aligned} {\mathbb {E}}\left[ \int _{0}^{T}\left| U_{\alpha (i)}\left( C^{i}_{t}-\theta _{\alpha (i)}{\overline{Z}}^{*,n}_{t}\right) \right| ^{2}dt+\left| U_{\alpha (i)}\left( X^{i}_{T}-\theta _{\alpha (i)}{\overline{X}}_{T}^{*,n}\right) \right| ^{2}\right]<M<\infty , \end{aligned}$$
(B.5)

where M is a constant independent of n, as the other condition in Assumption 5 is much easier to verify.

Without loss of generality, we assume \(\alpha (i)=1\). Then,

$$\begin{aligned} \begin{aligned}&\left| U_{1}\left( C^{i}_{t}-\theta _{1}{\overline{Z}}^{*,n}_{t}\right) \right| ^{2}\\&=\exp \left\{ -\frac{2}{\beta _{1}}\left( p^{i}(t)X^{i}_{t}+q^{i}(t)\right) +2\frac{\theta _{1}}{\beta _{1}}{\overline{Z}}^{*,n}_{t}\right\} \\&=\exp \left\{ -\frac{2}{\beta _{1}}\left( p^{i}(t)X^{i}_{t}+q^{i}(t)\right) +2\frac{\theta _{1}}{\beta _{1}}e^{-\delta t}z_{0}+\frac{\theta _{1}}{\beta _{1}}\frac{2}{n}\sum _{j=1}^{n}\int _{0}^{t}\delta e^{\delta (s-t)}C^{*,j}(s,X^{*,j}_{s})ds\right\} \\&\le C\exp \left\{ -\frac{2}{\beta _{1}}p^{i}(t)X^{i}_{t}+\delta \frac{\theta _{1}}{\beta _{1}}\frac{2}{n}\sum _{j=1}^{n}\int _{0}^{t}\frac{e^{\delta (s-t)}}{T+1-s}X^{*,j}_{s}ds\right\} \\&\le C\exp \left\{ -\frac{2}{\beta _{1}}p^{i}(t)e^{-\int _{0}^{t}p^{i}(s)ds}\int _{0}^{t}e^{\int _{0}^{s}p^{i}(v)dv}\Pi ^{i}(s)\sigma _{1}dW^{i}_{s}+\delta \frac{\theta _{1}}{\beta _{1}}\frac{2}{n}\sum _{j=1}^{n}\int _{0}^{t}e^{\delta (s-t)}\frac{\mu _{\alpha (j)}}{\sigma _{\alpha (j)}}\beta _{\alpha (j)}W^{j}_{s}ds\right\} . \end{aligned} \end{aligned}$$

By Itô’s formula, we get

$$\begin{aligned} \int _{0}^{t}e^{\delta s}\frac{\mu _{\alpha (j)}}{\sigma _{\alpha (j)}}\beta _{\alpha (j)}W^{j}_{s}ds=\int _{0}^{t}\left( F^{j}(t)-F^{j}(s)\right) dW^{j}_{s}, \end{aligned}$$
(B.6)

where

$$\begin{aligned} F^{j}(t):=\frac{\mu _{\alpha (j)}\beta _{\alpha (j)}}{\delta \sigma _{\alpha (j)}}\left( e^{\delta t}-1\right) . \end{aligned}$$

Therefore, we have

$$\begin{aligned} \begin{aligned} \left| U_{1}\left( C^{i}_{t}-\theta _{1}{\overline{Z}}^{*,n}_{t}\right) \right| ^{2} \le C\exp \left\{ \int _{0}^{t}G(s,t)dW^{i}_{s}+\frac{1}{n}\sum _{j=1}^{n}\int _{0}^{t}H^{j}(s,t)dW^{j}_{s}\right\} , \end{aligned} \end{aligned}$$

for some bounded functions \(G,H^{j}:[0,T]\times [0,T]\rightarrow {\mathbb {R}}\). It is worth noting that \(H^{j}\) has a uniform bound, which is still denoted by M.

Hence,

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\left[ \left| U_{1}\left( C^{i}_{t}-\theta _{1}{\overline{Z}}^{*,n}_{t}\right) \right| ^{2}\right]&\le C{\mathbb {E}}\left[ \exp \left\{ \int _{0}^{t}G(s,t)dW^{i}_{s}+\frac{1}{n}\sum _{j=1}^{n}\int _{0}^{t}H^{j}(s,t)dW^{j}_{s}\right\} \right] \\&=\exp \left\{ \int _{0}^{t}\left( G(s,t)+\frac{1}{n}H^{i}(s,t)\right) ^{2}ds+\frac{1}{n}\sum _{j\ne i}^{n}\int _{0}^{t}\left( H^{j}(s,t)\right) ^{2}ds\right\} . \end{aligned}\nonumber \\ \end{aligned}$$
(B.7)

Then, it is straightforward to get

$$\begin{aligned} {\mathbb {E}}\left[ \int _{0}^{T}\left| U_{\alpha (i)}\left( C^{i}_{t}-\theta _{\alpha (i)}{\overline{Z}}^{*,n}_{t}\right) \right| ^{2}dt\right]<M<\infty , \end{aligned}$$
(B.8)

where M is a constant independent of n. The estimation on term \({\mathbb {E}}\left[ \left| U_{1}\left( X^{i}_{T}-\theta _{1}{\overline{X}}_{T}^{*,n}\right) \right| ^{2}\right] \) is similar and we omit it here.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Zhang, K. A mean field game approach to relative investment–consumption games with habit formation. Math Finan Econ (2024). https://doi.org/10.1007/s11579-024-00360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11579-024-00360-4

Keywords

Mathematics Subject Classification

PACS

Navigation