Skip to main content
Log in

On moment-type estimators for a class of log-symmetric distributions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we propose three simple closed form estimators for a class of log-symmetric distributions on \({\mathbb {R}}^{+}\). The proposed methods make use of some key properties of this class of distributions. We derive the asymptotic distributions of these estimators. The performance of the proposed estimators are then compared with those of the maximum likelihood estimators through Monte Carlo simulations. Finally, some illustrative examples are presented to illustrate the methods of estimation developed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader S, Priest A (1982) Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Katawa K, Umekawa S (eds) Progress in science and engineering of composites. ICCM-IV, Tokyo, pp 1129–1136

    Google Scholar 

  • Balakrishnan N, Zhu X (2014) An improved method of estimation for the parameters of the Birnbaum–Saunders distribution. J Stat Comput Simul 84:2285–2294

    Article  MathSciNet  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327

    Article  MATH  MathSciNet  Google Scholar 

  • Crow EL, Shimizu K (eds) (1988) Lognormal distributions: theory and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  • Díaz-García JA, Leiva V (2005) A new family of life distributions based on elliptically contoured distributions. J Stat Plan Inference 128:445–457

    Article  MATH  MathSciNet  Google Scholar 

  • Engelhardt M, Bain LJ, Wright FT (1981) Inferences on the parameters of the Birnbaum–Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 23:251–256

    Article  MATH  MathSciNet  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Gastwirth JL, Cohen ML (1970) Small sample behavior of some robust linear estimators of location. J Am Stat Assoc 65:946–973

    Article  MATH  Google Scholar 

  • Hinkley DV, Revankar NS (1977) Estimation of the Pareto law from underreported data. J Econom 5:1–11

    Article  MATH  Google Scholar 

  • Hodges JL, Lehmann EL (1963) Estimates of location based on rank tests. Ann Math Stat 34:598–611

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Jones MC (2008) On reciprocal symmetry. J Stat Plan Inference 138:3039–3043

    Article  MATH  MathSciNet  Google Scholar 

  • Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Marshall AW, Olkin I (2007) Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer, New York

    MATH  Google Scholar 

  • McCool JI (1974). Inference techniques for Weibull populations. Aerospace Research Laboratories Report ARL TR 74-0180, Wright-Patterson AFB, Ohio

  • Ng HKT, Kundu D, Balakrishnan N (2003) Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput Stat Data Anal 43:283–298

    Article  MATH  MathSciNet  Google Scholar 

  • Puig P (2008) A note on the harmonic law: a two-parameter family of distributions for ratios. Stat Probab Lett 78:320–326

    Article  MATH  MathSciNet  Google Scholar 

  • R-Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rieck JR, Nedelman JR (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 33:51–60

    MATH  Google Scholar 

  • Serfling R (2002) Efficient and robust fitting of lognormal distributions. N Am Actuar J 6:95–109

    Article  MATH  MathSciNet  Google Scholar 

  • Uppuluri VRR (1981) Some properties of log-Laplace distribution. In: Patil GP, Taillie C, Baldessari B (eds) Statistical distributions in scientific work, vol 4. D. Reidel, Dordrecht, pp 105–110

    Chapter  Google Scholar 

  • Vanegas LH, Paula GA (2016) Log-symmetric distributions: statistical properties and parameter estimation. Braz J Probab Stat 30:196–220

    Article  MATH  MathSciNet  Google Scholar 

  • Wang M, Park C, Sun X (2015) Simple robust parameter estimation for the Birnbaum–Saunders distribution. J Stat Distrib Appl 2:14

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank the associate editor and the reviewer for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Bourguignon.

Appendices

Appendix 1: Asymptotic joint distribution of \(\widetilde{\nu }\) and \(\widetilde{\theta }\)

Let \(\mathbf{X}=(X_{1},\ldots ,X_{n})^{\top }\) be independent and identically distributed random variables with log-symmetric distribution. Consider

$$\begin{aligned} {S}=\frac{1}{n}\sum _{j=1}^{n}X_{j} \quad {\text {and}} \quad R=\left[ \sum _{j=1}^{n}\frac{1}{X_{j}} \right] ^{-1}. \end{aligned}$$

From the strong law of large numbers, it is known that S and \(R^{-1}\) converge almost surely to E[X] and \(E[X^{-1}]\), respectively. Also from the central limit theorem, we readily observe that S and \(R^{-1}\) are asymptotically normally distributed. Note that the vector \((S,R^{-1})^{\top }\) is bivariate normally distributed, that is,

$$\begin{aligned} \sqrt{n}\left( \begin{array}{l} S-E[X]\\ R^{-1}-E[X^{-1}] \end{array}\right) \sim {\text {N}} \left[ \left( \begin{array}{l} 0\\ 0 \end{array}\right) , \left( \begin{array}{c@{\quad }c} {\text {Var}}[X] &{} 1 - {\text {E}}[X]{\text {E}}[X^{-1}]\\ 1 - {\text {E}}[X]{\text {E}}[X^{-1}] &{} {\text {Var}}[X^{-1}] \end{array}\right) \right] . \end{aligned}$$

We now need to find the asymptotic joint distribution of \(\widetilde{{\theta }} = f_1(S, R)\) and \(\widetilde{\nu } = f_2(S, R)\). For this purpose, we make use of the delta method. Suppose \({\varvec{X}} = (x_1, x_2)^{\top }\), \({\varvec{\eta }}\) and \({\varvec{\Sigma }}\) are such that \(\sqrt{n}({\varvec{X}} - {\varvec{\eta }})\mathop {\rightarrow }\limits ^{d}\mathrm{N}\left( 0,{\varvec{\Sigma }}\right) \). Let \(f = (f_1(x_1, x_2), f_2(x_1, x_2))^{\top }\) be a mapping from \({\mathbb {R}}^{2}\) to \({\mathbb {R}}^2\), where each \(f_i\) is differentiable at \({\varvec{\eta }}\). Let \({\mathbf {D}}\) be the Jacobian matrix of f with respect to \({\varvec{X}}\). Then, \(\sqrt{n}(f({\varvec{X}}) - f({\varvec{\eta }}))\mathop {\rightarrow }\limits ^{d}\mathrm{N}\left( 0,{\mathbf {D}} {\varvec{\Sigma }} {\mathbf {D}}^{\top }\right) \).

Thus, \(\sqrt{n}\left( f\left( R, S\right) - {(\theta , \nu )}^{\top }\right) \mathop {\rightarrow }\limits ^{d}\mathrm{N}\left( 0,{\mathbf {D}} {\varvec{\Sigma }} {\mathbf {D}}^{\top }\right) \), with

$$\begin{aligned} \mathbf{D} = \left( \begin{array}{c@{\quad }c} \frac{\partial \, f_1(x_1,x_2)}{\partial \, x_1} &{} \frac{\partial \, f_1(x_1,x_2)}{\partial \, x_2}\\ \frac{\partial \, f_2(x_1,x_2)}{\partial \, x_1} &{} \frac{\partial \, f_2(x_1,x_2)}{\partial \, x_2} \end{array}\right) \Bigg |_{x_1=E[X], \, x_2=E[X^{-1}]}. \end{aligned}$$

Appendix 2: Asymptotic distribution of \(\widetilde{\nu }_{\star }\)

First, note that

$$\begin{aligned} E[\,\overline{Z}\,]=E\left[ {X}\right] E\left[ \frac{1}{X}\right] \end{aligned}$$

and

$$\begin{aligned} E[\,\overline{Z}^{2}\,]= & {} \frac{1}{n^{2}(n-1)^{2}}E\left[ \sum _{1\le {i}\ne {j}\ne {k}\ne {l}\le {n}}\frac{{X}_{i}X_{j}}{X_{k}X_{l}} +\sum _{1\le {i}\ne {j}\ne {k}\le {n}}\frac{X_{i}^{2}}{X_{j}X_{k}}\right. \\&\left. +\sum _{1\le {i}\ne {j}\ne {k}\le {n}}\frac{X_{j}X_{k}}{X_{i}^{2}}\right. \\&\left. +2\sum _{1\le {i}\ne {j}\ne {k}\le {n}}\frac{X_{i}X_{j}}{X_{i}X_{k}} + \sum _{1\le {i}\ne {j}\le {n}}\frac{X_{i}^{2}}{X_{j}^{2}}+ \sum _{1\le {i}\ne {j}\le {n}}\frac{X_{i}X_{j}}{X_{j}X_{i}} \right] \\= & {} \frac{1}{n^{2}(n-1)^{2}}\left[ n(n-1)(n-2)(n-3)\left( E[X]E\left[ \frac{1}{X}\right] \right) ^2 \right. \\&+2n(n-1)(n-2)E[X]E\left[ \frac{1}{X}\right] \\&+ 2n(n-1)(n-2)E[X^2]\left( E\left[ \frac{1}{X}\right] \right) ^2 \\&+ \left. 2n(n-1) \right] . \end{aligned}$$

These expressions yield

$$\begin{aligned} {\text {Var}}[\,\overline{Z}\,]\approx \frac{2}{n}\left[ -2\left( E[X]E\left[ \frac{1}{X}\right] \right) ^2 + E[X]E\left[ \frac{1}{X}\right] +E[X^2]\left( E\left[ \frac{1}{X}\right] \right) ^2\right] . \end{aligned}$$

Upon using Taylor expansion, we have

$$\begin{aligned} \widetilde{\nu }_{\star } = g(\overline{z})=g(E[\,\overline{Z}\,]) +(\overline{z}-E[\,\overline{Z}\,])g'(E[\,\overline{Z}\,])+\frac{(\overline{z}-E[\,\overline{Z}\,])^2}{2}g''(E[\,\overline{Z}\,])+\cdots , \end{aligned}$$

where \(g'(\cdot )\) and \(g''(\cdot )\) denote the first and second derivatives of the function of \(g(\cdot )\). We thus obtain the asymptotic distribution of \(\widetilde{\nu }_{\star }\) as

$$\begin{aligned} \widetilde{\nu }_{\star }\xrightarrow [n\rightarrow \infty ]{}{\text {N}} \left( \nu ,[g'(E[\,\overline{Z}\,])]^2{\text {Var}}[\,\overline{Z}\,]\right) . \end{aligned}$$

We also obtain the bias of \(\widetilde{\nu }_{\star }\) as

$$\begin{aligned} {\text {Bias}}(\widetilde{\nu }_{\star })\approx \frac{1}{2}g''(E[\,\overline{Z}\,]){\text {Var}}[\,\overline{Z}\,]. \end{aligned}$$

Appendix 3: R scripts

In this appendix, we present some R codes used in Sect. 5.

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Saulo, H., Bourguignon, M. et al. On moment-type estimators for a class of log-symmetric distributions. Comput Stat 32, 1339–1355 (2017). https://doi.org/10.1007/s00180-017-0722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0722-6

Keywords

Navigation