Computational Statistics

, Volume 32, Issue 4, pp 1339–1355 | Cite as

On moment-type estimators for a class of log-symmetric distributions

  • N. Balakrishnan
  • Helton Saulo
  • Marcelo Bourguignon
  • Xiaojun Zhu
Original Paper


In this paper, we propose three simple closed form estimators for a class of log-symmetric distributions on \({\mathbb {R}}^{+}\). The proposed methods make use of some key properties of this class of distributions. We derive the asymptotic distributions of these estimators. The performance of the proposed estimators are then compared with those of the maximum likelihood estimators through Monte Carlo simulations. Finally, some illustrative examples are presented to illustrate the methods of estimation developed here.


Asymptotic normality Hodges–Lehmann estimator Log-symmetric distributions Maximum likelihood estimator Moment estimator Modified moment estimator 



We thank the associate editor and the reviewer for the constructive comments.


  1. Bader S, Priest A (1982) Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Katawa K, Umekawa S (eds) Progress in science and engineering of composites. ICCM-IV, Tokyo, pp 1129–1136Google Scholar
  2. Balakrishnan N, Zhu X (2014) An improved method of estimation for the parameters of the Birnbaum–Saunders distribution. J Stat Comput Simul 84:2285–2294CrossRefMathSciNetGoogle Scholar
  3. Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327CrossRefMATHMathSciNetGoogle Scholar
  4. Crow EL, Shimizu K (eds) (1988) Lognormal distributions: theory and applications. Marcel Dekker, New YorkMATHGoogle Scholar
  5. Díaz-García JA, Leiva V (2005) A new family of life distributions based on elliptically contoured distributions. J Stat Plan Inference 128:445–457CrossRefMATHMathSciNetGoogle Scholar
  6. Engelhardt M, Bain LJ, Wright FT (1981) Inferences on the parameters of the Birnbaum–Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 23:251–256CrossRefMATHMathSciNetGoogle Scholar
  7. Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman & Hall, LondonCrossRefMATHGoogle Scholar
  8. Gastwirth JL, Cohen ML (1970) Small sample behavior of some robust linear estimators of location. J Am Stat Assoc 65:946–973CrossRefMATHGoogle Scholar
  9. Hinkley DV, Revankar NS (1977) Estimation of the Pareto law from underreported data. J Econom 5:1–11CrossRefMATHGoogle Scholar
  10. Hodges JL, Lehmann EL (1963) Estimates of location based on rank tests. Ann Math Stat 34:598–611CrossRefMATHMathSciNetGoogle Scholar
  11. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  12. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  13. Jones MC (2008) On reciprocal symmetry. J Stat Plan Inference 138:3039–3043CrossRefMATHMathSciNetGoogle Scholar
  14. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, HobokenCrossRefMATHGoogle Scholar
  15. Marshall AW, Olkin I (2007) Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer, New YorkMATHGoogle Scholar
  16. McCool JI (1974). Inference techniques for Weibull populations. Aerospace Research Laboratories Report ARL TR 74-0180, Wright-Patterson AFB, OhioGoogle Scholar
  17. Ng HKT, Kundu D, Balakrishnan N (2003) Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput Stat Data Anal 43:283–298CrossRefMATHMathSciNetGoogle Scholar
  18. Puig P (2008) A note on the harmonic law: a two-parameter family of distributions for ratios. Stat Probab Lett 78:320–326CrossRefMATHMathSciNetGoogle Scholar
  19. R-Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  20. Rieck JR, Nedelman JR (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 33:51–60MATHGoogle Scholar
  21. Serfling R (2002) Efficient and robust fitting of lognormal distributions. N Am Actuar J 6:95–109CrossRefMATHMathSciNetGoogle Scholar
  22. Uppuluri VRR (1981) Some properties of log-Laplace distribution. In: Patil GP, Taillie C, Baldessari B (eds) Statistical distributions in scientific work, vol 4. D. Reidel, Dordrecht, pp 105–110CrossRefGoogle Scholar
  23. Vanegas LH, Paula GA (2016) Log-symmetric distributions: statistical properties and parameter estimation. Braz J Probab Stat 30:196–220CrossRefMATHMathSciNetGoogle Scholar
  24. Wang M, Park C, Sun X (2015) Simple robust parameter estimation for the Birnbaum–Saunders distribution. J Stat Distrib Appl 2:14CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Helton Saulo
    • 1
    • 2
  • Marcelo Bourguignon
    • 3
  • Xiaojun Zhu
    • 4
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Departamento de EstatísticaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Departamento de EstatísticaUniversidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Department of Mathematical SciencesXi’an Jiaotong-Liverpool UniversitySuzhouPeople’s Republic of China

Personalised recommendations