Skip to main content
Log in

Modeling and multi-objective optimization of the milling process for AISI 1060 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, an experimental study was carried out to investigate the influence of the cutting parameters namely cutting speed \(({V}_{c})\), feed per tooth \(({f}_{z})\), and depth of cut \(({a}_{p})\) on three machining performance aspects, including cutting temperature \(({Q}_{s})\), surface roughness \(({R}_{a})\), and microhardness \((H)\) when milling of AISI 1060 steel. Response surface methodology \(({\text{RSM}})\) was used for evaluating and predicting the impact of the considered cutting parameters on the selected machining characteristic indices. The results revealed that the error rates of the developed models compared to experimental ones were found to be as follows: 3.19% for \({Q}_{s}\), 5.32% for \({R}_{a}\), 1.63% for \(H\), These error rates underscore the robustness and reliability of the developed models in accurately predicting the respective machining characteristics. Moreover, this study stands out in its approach by leveraging the experimentally developed RSM models as constraints within the optimization framework, providing a more precise and tailored approach compared to relying on generalized empirical models commonly found in industry handbooks. This is why a multi-objective optimization using genetic algorithm (GA) was performed to minimize both the production time and the production cost per unit by defining the problem with three key cutting parameters and utilizing the experimentally derived response surface methodology (RSM) models as constraints. For instance, the \(({R}_{a})\) and \(H\) -based RSM model served as constraints ensuring surface roughness and microhardness values below a specified threshold while satisfying other machining constraints (tool life, cutting force, cutting power). As a result, a set of optimal solutions of combinations of cutting parameters is achieved for simultaneously minimum production time and cost per unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\({a}_{p}\) :

Depth of cut (\({\text{mm}}\))

\({a}_{P{\text{min}}}\) :

The minimum depth of cut\(\mathrm{ mm}\) (mm)

\({a}_{P{\text{max}}}\) :

The maximum depth of cut (\({\text{mm}}\))

\({a}_{e}\) :

Cutting width (\({\text{mm}}\))

\(C\) :

Machining index

\({C}_{c}\) :

The total cost per unit product (\({\text{Euro}}\))

\({C}_{h}\) :

Cost of part handling time (\({\text{Euro}}\))

\({C}_{m}\) :

Cost of machining time (\({\text{Euro}}\))

\({C}_{th}\) :

Cost of tool change time (\({\text{Euro}}\))

\({C}_{tc}\) :

Tooling cost (\({\text{Euro}}\))

\({C}_{0}\) :

The cost rate (\({\text{Euro}}/{\text{min}}\))

\({C}_{t}\) :

The cost per cutting edge (\({\text{Euro}}\))

\(D\) :

The cutter diameter (\({\text{mm}}\))

\({f}_{z}\) :

Feed per tooth (\({\text{mm}}/{\text{tooth}}\))

\({f}_{{z}_{{\text{min}}}}\) :

The minimum feed per tooth (\({\text{mm}}/{\text{tooth}}\))

\({f}_{{z}_{{\text{max}}}}\) :

The maximum feed per tooth (\({\text{mm}}/{\text{tooth}}\))

\({F}_{u}\) :

The maximum cutting force (\(N\))

\({F}_{c}\) :

Cutting force (\(N\))

\(H\) :

Microhardness (\({H}_{v}\))

\({H}_{s}\) :

Specified value of microhardness (\({H}_{v}\))

\({K}_{c}\) :

Specific cutting force (\({N/{\text{mm}}}^{2}\))

\(L\) :

Workpiece length (\({\text{mm}}\))

\(n\) :

Tool life index

\({n}_{e}\) :

Number of cutting edges per insert

\({n}_{p}\) :

The number of pieces cut in one tool life (the number of pieces cut with one cutting edge until the tool is changed)

\(MRR\) :

Material removal rate (\({{\text{mm}}}^{3}/{\text{min}}\))

\({P}_{c}\) :

Cutting power (\(W\))

\({P}_{m}\) :

Net Power (\(W\))

\({P}_{t}\) :

Price of the insert (\({\text{Euro}}\))

\({P}_{u}\) :

The nominal power of the machine (\(W\))

\({Q}_{c}\) :

Cutting temperature (\(^\circ {\text{C}}\))

\({R}_{a}\) :

Surface roughness (\(\upmu m\))

\({R}_{as}\) :

Specified value of surface roughness (\(\upmu m\))

\(S\) :

Spindle speed (\({\text{Rpm}}\))

\(T\) :

Tool life (\({\text{min}}\))

\({T}_{c}\) :

Production cycle time per piece (\({\text{min}}\))

\({T}_{h}\) :

Part handling time (\({\text{min}}\))

\({T}_{m}\) :

Machining time (\({\text{min}}\))

\({T}_{t}\) :

Tool change time (\({\text{min}}\))

\({T}_{min}\) :

The minimum tool life (\({\text{min}}\))

\({T}_{{\text{max}}}\) :

The maximum tool life (\({\text{min}}\))

\({V}_{c}\) :

Cutting speed (\({\text{m}}/{\text{min}}\))

\({V}_{{c}_{{\text{min}}}}\) :

The minimum cutting speed (\({\text{m}}/{\text{min}}\))

\({V}_{{c}_{{\text{max}}}}\) :

The maximum cutting speed (\({\text{m}}/{\text{min}}\))

\({V}_{f}\) :

Feed (\({\text{mm}}/{\text{min}}\))

\(Z\) :

The number of teeth

\(\eta\) :

Machine efficiency

\({C}_{F}\),\({\chi }_{F}\), \({y}_{F}\), \({t}_{F}\), \({w}_{F}\), \({q}_{F}\), \({p}_{F}\), \({k}_{F}\) :

Constants and exponents for the cutting force equation

References

  1. Zahoor S, Saleem MQ, Abdul-Kader W et al (2019) Improving surface integrity aspects of AISI 316L in the context of bioimplant applications. Int J Adv Manuf Technol 105:2857–2867. https://doi.org/10.1007/s00170-019-04444-0

    Article  Google Scholar 

  2. Wang X, Huang C, Zou B et al (2018) Experimental study of surface integrity and fatigue life in the face milling of Inconel 718. Front Mech Eng 13:243–250. https://doi.org/10.1007/s11465-018-0479-9

    Article  Google Scholar 

  3. Lu X, Jia Z, Wang H et al (2019) The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718. Meas J Int Meas Confed 140:56–62. https://doi.org/10.1016/j.measurement.2019.03.037

    Article  Google Scholar 

  4. Abbas AT, Helmy MO, Al-Abduljabbar AA et al (2023) Precision face milling of maraging steel 350: an experimental investigation and optimization using different machine learning techniques. Machines 11:1001. https://doi.org/10.3390/machines11111001

    Article  Google Scholar 

  5. Ping Z, Xiujie Y, Penghao W, Xiao Y (2021) Surface integrity and tool wear mechanism of 7050–T7451 aluminum alloy under dry cutting. Vacuum 184:109886. https://doi.org/10.1016/j.vacuum.2020.109886

    Article  Google Scholar 

  6. Wang Z, Liu Y (2020) Study of surface integrity of milled gamma titanium aluminide. J Manuf Process 56:806–819. https://doi.org/10.1016/j.jmapro.2020.05.021

    Article  Google Scholar 

  7. Saleem MQ, Mumtaz S (2020) Face milling of Inconel 625 via wiper inserts: evaluation of tool life and workpiece surface integrity. J Manuf Process 56:322–336. https://doi.org/10.1016/j.jmapro.2020.04.011

    Article  Google Scholar 

  8. Bembenek M, Dzienniak D, Dzindziora A et al (2023) Investigation of the impact of selected face milling parameters on the roughness of the machined surface for 1.4301 steel. Adv Sci Technol Res J 17:299–312. https://doi.org/10.12913/22998624/170422

    Article  Google Scholar 

  9. Lu X, Zhang H, Jia Z et al (2018) Cutting parameters optimization for MRR under the constraints of surface roughness and cutter breakage in micro-milling process. J Mech Sci Technol 32:3379–3388. https://doi.org/10.1007/s12206-018-0641-7

    Article  Google Scholar 

  10. Lu X, Wang FR, Xue L et al (2019) Investigation of material removal rate and surface roughness using multi-objective optimization for micro-milling of Inconel 718. Ind Lubr Tribol 71:787–794. https://doi.org/10.1108/ILT-07-2018-0259

    Article  Google Scholar 

  11. Leo Kumar SP (2018) Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using genetic algorithm. Meas J Int Meas Confed 124:386–394. https://doi.org/10.1016/j.measurement.2018.04.056

    Article  Google Scholar 

  12. Yang Y (2018) Machining parameters optimization of multi-pass face milling using a chaotic imperialist competitive algorithm with an efficient constraint-handling mechanism. C - Comput Model Eng Sci 116:365–389. https://doi.org/10.31614/cmes.2018.03847

    Article  Google Scholar 

  13. Fang Y, Zhao L, Lou P, Yan J (2021) Cutting parameter optimization method in multi-pass milling based on improved adaptive PSO and SA. J Phys Conf Ser 1848. https://doi.org/10.1088/1742-6596/1848/1/012116

  14. Li B, Tian X, Zhang M (2020) Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm. Int J Adv Manuf Technol 111:2323–2335. https://doi.org/10.1007/s00170-020-06284-9

    Article  Google Scholar 

  15. Su Y, Zhao G, Zhao Y, et al (2020) Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel. Metals (Basel) 10. https://doi.org/10.3390/met10020217

  16. Rana M, Singh T, Sharma VK et al (2021) Optimization of surface integrity in face milling of AISI 52,100 alloy steel using Taguchi based grey relational analysis. Mater Today Proc 50:2105–2110. https://doi.org/10.1016/j.matpr.2021.09.430

    Article  Google Scholar 

  17. Zhao J, Li L, Nie H et al (2021) Multi-objective integrated optimization of tool geometry angles and cutting parameters for machining time and energy consumption in NC milling. Int J Adv Manuf Technol 117:1427–1444. https://doi.org/10.1007/s00170-021-07772-2

    Article  Google Scholar 

  18. Nguyen T, Pham V-H (2023) The investigation and optimization of parameters in face milling of S50C steel under MQL system. J Appl Eng Sci 21(2):94–107. https://doi.org/10.5937/jaes0-38857

    Article  Google Scholar 

  19. Zhou L, Li J, Li F et al (2018) Optimization parameters for energy efficiency in end milling. Procedia CIRP 69:312–317. https://doi.org/10.1016/j.procir.2017.12.005

    Article  Google Scholar 

  20. Rajeswari B, Amirthagadeswaran KS (2018) Study of machinability and parametric optimization of end milling on aluminium hybrid composites using multi-objective genetic algorithm. J Brazilian Soc Mech Sci Eng 40:1–15. https://doi.org/10.1007/s40430-018-1293-3

    Article  Google Scholar 

  21. Xu J, Yan F, Li Y, et al (2020) Multiobjective optimization of milling parameters for ultrahigh-strength steel AF1410 based on the NSGA-II method. Adv Mater Sci Eng 2020. https://doi.org/10.1155/2020/8796738

  22. Cheng DJ, Xu F, Xu SH et al (2020) Minimization of surface roughness and machining deformation in milling of Al alloy thin-walled parts. Int J Precis Eng Manuf 21:1597–1613. https://doi.org/10.1007/s12541-020-00366-0

    Article  Google Scholar 

  23. Wang P, Bai Q, Cheng K, et al (2023) Multi-objective optimization of micro-milling parameters—the trade-offs between machining quality, efficiency, and sustainability in the fabrication of thin-walled microstructures. Appl Sci 13. https://doi.org/10.3390/app13169392

  24. Tran CC, Luu VT, Nguyen VT, et al (2023) Multi-objective optimization of CNC milling parameters of 7075 aluminium alloy using response surface methodology. Jordan J Mech Ind Eng 17:393–402. https://doi.org/10.59038/jjmie/170308

  25. Huang W, Wan C, Wang G, Zhang G (2023) Surface integrity optimization for ball-end hard milling of AISI D2 steel based on response surface methodology. PLoS ONE 18:1–23. https://doi.org/10.1371/journal.pone.0290760

    Article  Google Scholar 

  26. Sandvik Coromant - manufacturing tools & machining solutions. https://www.sandvik.coromant.com/en-us. Accessed 9 Nov 2021

  27. AISI 1060 Carbon Steel (UNS G10600). https://www.azom.com/article.aspx?ArticleID=6542. Accessed 14 Mar 2022

  28. Muhammad A, Gupta MK, Mikołajczyk T et al (2021) Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of Inconel 718. Metals (Basel) 11:1–18. https://doi.org/10.3390/met11010167

    Article  Google Scholar 

  29. Hernández-González LW, Pérez-Rodríguez R, Quesada-Estrada AM, Dumitrescu L (2018) Effects of cutting parameters on surface roughness and hardness in milling of AISI 304 steel. DYNA 85:57–63. https://doi.org/10.15446/dyna.v85n205.64798

    Article  Google Scholar 

  30. Oosthuizen GA, Nunco K, Conradie PJT, Dimitrov DM (2016) The effect of cutting parameters on surface integrity in milling TI6AL4V. South African J Ind Eng 27:115–123. https://doi.org/10.7166/27-4-1199

    Article  Google Scholar 

  31. Yang X, Ren C, Wang Y, Chen G (2012) Experimental study on surface integrity of ti-6al-4v in high speed side milling. Trans Tianjin Univ 18:206–212. https://doi.org/10.1007/s12209-012-1784-8

    Article  Google Scholar 

  32. Groover MP (2007) Fundamentals of modern manufacturing: material, processes, and systems. Hoboken, NJ: J. Wiley & Sons

  33. Nefedov N, Osopov K (1987) Typical examples and problems in metal cutting and tool design. Mir Publishers, Moscow

Download references

Acknowledgements

The authors sincerely thank the staff of the Department of Engineering and Management of Industrial Systems, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, Romania, for their technical support during the preparation of this research project.

Author information

Authors and Affiliations

Authors

Contributions

Mohammed Toufik Amira: experimental investigation; data collection; writing—original draft; validation; formal analysis.

Imane Rezgui: conceptualization; methodology; writing—original draft; validation; formal analysis; analysis and interpretation of results.

Abderrahim Belloufi: conceived the original idea; methodology; supervision; project administration; analysis and interpretation of results.

Mourad Abdelkrim: experimental investigation; data collection; helped supervise the project.

Youssef Touggui: review and editing; proofreading.

Elhocine Chiba: writing—original draft; data collection.

Tampu Catalin: material preparation, experimental investigation.

Bogdan Chiriță: material preparation, project administration.

Corresponding author

Correspondence to Abderrahim Belloufi.

Ethics declarations

Ethical approval

This research does not include experiments involving human tissue and does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amira, M.T., Rezgui, I., Belloufi, A. et al. Modeling and multi-objective optimization of the milling process for AISI 1060 steel. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13693-7

Keywords

Navigation