Skip to main content

Advertisement

Log in

An overview of fused filament fabrication technology and the advancement in PLA-biocomposites

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The escalating significance of 3D printing in various industries is underscored by its ability to rapidly and cost-effectively produce distinctive parts. Among the 3D printing methods, fused filament fabrication (FFF) has emerged as a highly productive and cost-effective approach. While extensive efforts have been made to enhance the qualities of FFF products, challenges persist in material availability and quality compared to traditional methods. This study provides a meticulous overview of the FFF process, delving into various 3D printing processes, polymers, and polymer composites. Despite documented efforts to augment mechanical, thermal, and electrical properties, material constraints remain a focal point. Our analysis extends to various PLA/biocomposites, shedding light on achieved improvements and potential applications. Looking forward, the future trend in FFF technology suggests a paradigm shift towards enhanced material diversity and performance. Anticipated applications span beyond traditional use cases, encompassing sustainable manufacturing, medical devices, and eco-friendly construction materials. This comprehensive review not only consolidates the current state of FFF and PLA-biocomposites but also anticipates future trends and potential applications. This research enhances the current knowledge of additive manufacturing and sets a standard for assessing developments in FFF technology by comparing them to previous works.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Selvamani SK, Ngui WK, Rajan K, Samykano M, Kumar RR, Badadhe AM (2022) Investigation of bending and compression properties on PLA-brass composite using FDM. Phys Chem Earth, Parts A/B/C 128:103251. https://doi.org/10.1016/j.pce.2022.103251

    Article  Google Scholar 

  2. Sadiq HAJ. Review on 4D and 5D printing technology. Int Res J Eng Technol 2020:744–51

  3. ASTM. ASTM International Committee F42 on Additive Manufacturing Technologies, ASTM F2792–10 Standard Terminology for Additive Manufacturing Technologies, ASTM West Conshohocken, PA; 2009

  4. Standard A (2012) Standard terminology for additive manufacturing technologies. ASTM Int F2792–12a

  5. Medellin-Castillo HI, Zaragoza-Siqueiros J (2019) Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review. Chinese J Mech Eng 32. https://doi.org/10.1186/s10033-019-0368-0.

  6. Subramaniam SR, Samykano M, Selvamani SK, Ngui WK, Kadirgama K, Sudhakar K, et al. (2019) 3D printing: overview of PLA progress. AIP Conf Proc 2059. https://doi.org/10.1063/1.5085958.

  7. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  8. 3D Printing Industry Outlook (2019 Overview) - 3ERP 2019. https://www.3erp.com/blog/3d-printing-industry-outlook-2019-overview/ (accessed December 27, 2022).

  9. The Global 3D Printing Market - Growth, Trends, and Applications n.d. https://www.azom.com/article.aspx?ArticleID=22152 (accessed December 27, 2022).

  10. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  11. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 16. https://doi.org/10.1016/j.mtchem.2020.100248.

  12. Vyavahare S, Teraiya S, Panghal D, Kumar S (2020) Fused deposition modelling: a review. Rapid Prototyp J 26:176–201. https://doi.org/10.1108/RPJ-04-2019-0106

    Article  Google Scholar 

  13. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proc Inst Mech Eng Part B J Eng Manuf 224:135–145. https://doi.org/10.1243/09544054JEM1565

    Article  Google Scholar 

  14. Pu’ad NASM, Haq RHA, Noh HM, Abdullah HZ, Idris MI, Lee TC (2020) Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater Today Proc 29:228–32

    Article  Google Scholar 

  15. Cao D (2023) Investigation into surface-coated continuous flax fiber-reinforced natural sandwich composites via vacuum-assisted material extrusion. Prog Addit Manuf 1–15.

  16. Cao D (2023) Fusion joining of thermoplastic composites with a carbon fabric heating element modified by multiwalled carbon nanotube sheets. Int J Adv Manuf Technol 128:4443–4453

    Article  Google Scholar 

  17. Cao D, Bouzolin D, Lu H, Griffith DT (2023) Bending and shear improvements in 3D-printed core sandwich composites through modification of resin uptake in the skin/core interphase region. Compos Part B Eng 264:110912

    Article  Google Scholar 

  18. Sathies T, Senthil P, Anoop MS (2020) A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J 26:669–687

    Article  Google Scholar 

  19. Ravinder Reddy P, Anjani Devi P (2018) Review on the advancements to additive manufacturing-4D and 5D printing. Int J Mech Prod Eng Res Dev 8:397–402. https://doi.org/10.24247/ijmperdaug201841

    Article  Google Scholar 

  20. Haleem A, Javaid M (2019) Future applications of 5D printing in dentistry Current Medicine Research and Practice Future applications of five-dimensional printing in dentistry. Curr Med Res Pract 9:85–86

    Article  Google Scholar 

  21. Rochus P, Plesseria JY, Van Elsen M, Kruth JP, Carrus R, Dormal T (2007) New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronaut 61:352–359. https://doi.org/10.1016/j.actaastro.2007.01.004

    Article  Google Scholar 

  22. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34:746–756. https://doi.org/10.1016/j.tibtech.2016.03.004

    Article  Google Scholar 

  23. Haleem A, Javaid M, Vaishya R (2018) 5D printing and its expected applications in Orthopaedics. J Clin Orthop Trauma 9:10–11

    Google Scholar 

  24. Yap AUJ, Teoh SH, Petinakis E, Yu L, Edward G, Dean K et al (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Addit Manuf 2:1–11. https://doi.org/10.1016/j.addr.2016.06.012

    Article  Google Scholar 

  25. Zhou Y, Huang WM, Kang SF, Wu XL, Lu HB, Fu J et al (2015) From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol 29:4281–4288. https://doi.org/10.1007/s12206-015-0925-0

    Article  Google Scholar 

  26. Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4:22–36. https://doi.org/10.1016/j.bioactmat.2018.11.003

    Article  Google Scholar 

  27. Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp 10:175–185. https://doi.org/10.1080/17452759.2015.1111519

    Article  Google Scholar 

  28. Petrie EM (2019) 3D printing / additive manufacturing using polymers - Complete Guide. SpecialChem, pp 1–16

  29. Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies-a review to technical synthesis in numerical study of selective laser melting. Materials (Basel) 13:1–21. https://doi.org/10.3390/ma13173895

    Article  Google Scholar 

  30. Calignano F, Manfredi D, Ambrosio EP, Biamino S, Lombardi M, Atzeni E et al (2017) Overview on additive manufacturing technologies. Proc IEEE 105:593–612. https://doi.org/10.1109/JPROC.2016.2625098

    Article  Google Scholar 

  31. He Y, Zhang F, Saleh E, Vaithilingam J, Aboulkhair N, Begines B et al (2017) A tripropylene glycol diacrylate-based polymeric support ink for material jetting. Addit Manuf 16:153–161. https://doi.org/10.1016/j.addma.2017.06.001

    Article  Google Scholar 

  32. Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25. https://doi.org/10.1016/j.procir.2014.06.030

    Article  Google Scholar 

  33. Gonzalez JA, Mireles J, Lin Y, Wicker RB (2016) Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int 42:10559–10564. https://doi.org/10.1016/j.ceramint.2016.03.079

    Article  Google Scholar 

  34. Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, et al (2020) Binder jet 3D printing – process parameters, materials, properties, and challenges. Prog Mater Sci 100707. https://doi.org/10.1016/j.pmatsci.2020.100707.

  35. Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23:562–576. https://doi.org/10.1108/RPJ-05-2016-0076

    Article  Google Scholar 

  36. Kan CW (2011) Inkjet printing. Text. Asia 42:7–11. https://doi.org/10.4324/9780240821368-21

    Article  Google Scholar 

  37. Nayak L, Mohanty S, Nayak SK, Ramadoss A (2019) A review on inkjet printing of nanoparticle inks for flexible electronics. J Mater Chem C 7:8771–8795. https://doi.org/10.1039/c9tc01630a

    Article  Google Scholar 

  38. Trenfield SJ, Madla CM, Basit AW, Gaisford S (2018) Binder jet printing in pharmaceutical manufacturing. AAPS Adv Pharm Sci Ser 31:41–54. https://doi.org/10.1007/978-3-319-90755-0_3

    Article  Google Scholar 

  39. Li J, Rossignol F, Macdonald J (2015) Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15:2538–2558. https://doi.org/10.1039/c5lc00235d

    Article  Google Scholar 

  40. Dini F, Ghaffari SA, Jafar J, Hamidreza R, Marjan S (2020) A review of binder jet process parameters; powder, binder, printing and sintering condition. Met Powder Rep 75:95–100. https://doi.org/10.1016/j.mprp.2019.05.001

    Article  Google Scholar 

  41. Azizi Machekposhti S, Mohaved S, Narayan RJ (2019) Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov 14:101–113. https://doi.org/10.1080/17460441.2019.1567489

    Article  Google Scholar 

  42. Aduba DC, Margaretta ED, Marnot AEC, Heifferon KV, Surbey WR, Chartrain NA et al (2019) Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Mater Today Commun 19:204–211. https://doi.org/10.1016/j.mtcomm.2019.01.003

    Article  Google Scholar 

  43. Hafkamp T, van Baars G, de Jager B, Etman P (2018) A feasibility study on process monitoring and control in vat photopolymerization of ceramics. Mechatronics 56:220–241. https://doi.org/10.1016/j.mechatronics.2018.02.006

    Article  Google Scholar 

  44. Nikhil A (2017) 3D printing processes – vat photo polymerisation. EngineersgarageCom. https://www.engineersgarage.com/tech-articles/3d-printing-processes-vat-photo-polymerisation-part-3-8/. Accessed 3 Dec 2022

  45. Palanikumar K, Mudhukrishnan M, Soorya Prabha P (2020) Technologies in additive manufacturing for fiber reinforced composite materials: a review. Curr Opin Chem Eng 28:51–9. https://doi.org/10.1016/j.coche.2020.01.001

    Article  Google Scholar 

  46. Zindani D, Kumar K (2019) An insight into additive manufacturing of fiber reinforced polymer composite. Int J Light Mater Manuf 2:267–278. https://doi.org/10.1016/j.ijlmm.2019.08.004

    Article  Google Scholar 

  47. Asia P (2018) Photopolymerisation in stereolithography 10–3

  48. Manapat JZ, Chen Q, Ye P, Advincula RC (2017) 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 302:1–13. https://doi.org/10.1002/mame.201600553

    Article  Google Scholar 

  49. Munprom R, Limtasiri S (2019) Optimization of stereolithographic 3D printing parameters using Taguchi method for improvement in mechanical properties. Mater Today Proc 17:1768–1773. https://doi.org/10.1016/j.matpr.2019.06.209

    Article  Google Scholar 

  50. MA (2017) The 4 types of FFF / FDM 3D printer explained (Cartesian, Delta, Polar) - 3Dnatives. 3Dnatives. https://www.3dnatives.com/en/four-types-fdm-3d-printers140620174/. Accessed 27 Dec 2022

  51. Zakeri S, Vippola M, Levänen E (2020) A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit Manuf 35. https://doi.org/10.1016/j.addma.2020.101177.

  52. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C (2019) A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol 102:2877–2889. https://doi.org/10.1007/s00170-019-03332-x

    Article  Google Scholar 

  53. Rastogi P, Kandasubramanian B (2019) Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 366:264–304. https://doi.org/10.1016/j.cej.2019.02.085

    Article  Google Scholar 

  54. Ryan KR, Down MP, Banks CE (2021) Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications. Chem Eng J 403. https://doi.org/10.1016/j.cej.2020.126162.

  55. Kadry H, Wadnap S, Xu C, Ahsan F (2019) Digital light processing (DLP)3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci 135:60–67. https://doi.org/10.1016/j.ejps.2019.05.008

    Article  Google Scholar 

  56. Wang P, Zou B, Ding S, Li L, Huang C (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut 34:236–246. https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  57. Diegel O, Nordin A, Motte D (2019) Additive manufacturing technologies. https://doi.org/10.1007/978-981-13-8281-9_2.

  58. Obikawa T, Yoshino M, Shinozuka J (1999) Sheet steel lamination for rapid manufacturing. J Mater Process Technol 89–90:171–176. https://doi.org/10.1016/S0924-0136(99)00027-8

    Article  Google Scholar 

  59. Lamination S, Engineering L (2015) What is sheet lamination ? types of sheet lamination how sheet lamination works 1–7

  60. Chen YF, Wang YH, Tsai JC (2019) Enhancement of surface reflectivity of fused deposition modeling parts by post-processing. Opt Commun 430:479–85. https://doi.org/10.1016/j.optcom.2018.07.011

    Article  Google Scholar 

  61. dos Santos PL, Katic V, Loureiro HC, dos Santos MF, dos Santos DP, Formiga ALB et al (2019) Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sensors Actuators, B Chem 281:837–848. https://doi.org/10.1016/j.snb.2018.11.013

    Article  Google Scholar 

  62. Dermeik B, Travitzky N (2020) Laminated object manufacturing of ceramic-based materials. Adv Eng Mater 2000256. https://doi.org/10.1002/adem.202000256

  63. Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19:4515–4519. https://doi.org/10.1002/adma.200700789

    Article  Google Scholar 

  64. Weisensel L, Travitzky N, Sieber H, Greil P (2004) Laminated object manufacturing (LOM) of SiSiC composites. Adv Eng Mater 6:899–903. https://doi.org/10.1002/adem.200400112

    Article  Google Scholar 

  65. Mansfield B, Torres S, Yu T, Wu D (2019) A review on additive manufacturing of ceramics. ASME 2019 14th Int Manuf Sci Eng Conf MSEC 2019 1:36–53. https://doi.org/10.1115/MSEC2019-2886

  66. Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801. https://doi.org/10.1016/j.addma.2019.05.031

    Article  Google Scholar 

  67. Mostafaei A, Stevens EL, Ference JJ, Schmidt DE, Chmielus M (2018) Binder jetting of a complex-shaped metal partial denture framework. Addit Manuf 21:63–68. https://doi.org/10.1016/j.addma.2018.02.014

    Article  Google Scholar 

  68. Miyanaji H, Ma D, Atwater MA, Darling KA, Hammond VH, Williams CB. Binder jetting additive manufacturing of copper foam structures. Addit Manuf 2020;32. https://doi.org/10.1016/j.addma.2019.100960.

  69. Singh R, Gupta A, Tripathi O, Srivastava S, Singh B, Awasthi A et al (2020) Powder bed fusion process in additive manufacturing: an overview. Mater Today Proc 26:3058–3070. https://doi.org/10.1016/j.matpr.2020.02.635

    Article  Google Scholar 

  70. Luo X, Liu Y, Gu C, Li Z (2014) Study on the progress of solidification, deformation and densification during semi-solid powder rolling. Powder Technol 261:161–169

    Article  Google Scholar 

  71. Hirosawa F, Iwasaki T, Iwata M (2019) Kinetic analysis of mechanochemical reaction between zinc oxide and gamma ferric oxide based on the impact energy and collision frequency of particles. Powder Technol 352:360–368

    Article  Google Scholar 

  72. Li Y, Kalbasi R, Nguyen Q, Afrand M (2020) Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: an experimental study. Powder Technol 367:464–473

    Article  Google Scholar 

  73. Singh R, Chhabra M (2017) Three-dimensional printing. Reference Module in Materials Science and Materials Engineering, Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.04167-9

  74. Morton PA, Taylor HC, Murr LE, Delgado OG, Terrazas CA, Wicker RB (2020) In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion. J Mater Sci Technol 45:98–107. https://doi.org/10.1016/j.jmst.2019.11.009

    Article  Google Scholar 

  75. Popov VV, Fleisher A (2020) Hybrid additive manufacturing of steels and alloys. Manuf Rev 7:6. https://doi.org/10.1051/mfreview/2020005

    Article  Google Scholar 

  76. Tiwari SK, Pande S, Agrawal S, Bobade SM (2015) Selection of selective laser sintering materials for different applications. Rapid Prototyp J 21:630–648. https://doi.org/10.1108/RPJ-03-2013-0027

    Article  Google Scholar 

  77. Akilesh M, Elango PR, Devanand AA, Soundararajan R, Varthanan PA (2018) Optimization of selective laser sintering process parameters on surface quality. 3D Print Addit Manuf Technol 141–57. https://doi.org/10.1007/978-981-13-0305-0_13.

  78. Reiff C, Wulle F, Riedel O, Epple S, Onuseit V (2018) On inline process control for selective laser sintering. 8th Int Conf Mass Cust Pers – Community Eur (MCP-CE 2018) 141:230–9.

  79. Geng LC, Ruan XL, Wu WW, Xia R, Fang DN (2019) Mechanical properties of selective laser sintering (SLS) additive manufactured chiral auxetic cylindrical stent. Exp Mech 59:913–925. https://doi.org/10.1007/s11340-019-00489-0

    Article  Google Scholar 

  80. Ramya A, Vanapalli SL (2016) 3D printing technologies in various applications. Int J Mech Eng Technol 7:396–409

    Google Scholar 

  81. Deng X, Zeng Z, Peng B, Yan S, Ke W (2018) Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel) 11. https://doi.org/10.3390/ma11020216.

  82. Zhong Y, Rännar L-E, Liu L, Koptyug A, Wikman S, Olsen J et al (2017) Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater 486:234–245

    Article  Google Scholar 

  83. Lodes MA, Guschlbauer R, Koerner C (2015) Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater Lett 143:298–301

    Article  Google Scholar 

  84. Zaefferer S, Wright SI, Raabe D (2008) Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization. Metall Mater Trans A Phys Metall Mater Sci 39:374–389. https://doi.org/10.1007/s11661-007-9418-9

    Article  Google Scholar 

  85. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61:361–377

    Article  Google Scholar 

  86. Zaefferer S, Wright SI, Raabe D (2008) Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: a new dimension of microstructure characterization. Metall Mater Trans A 39:374–389

    Article  Google Scholar 

  87. Guschlbauer R, Momeni S, Osmanlic F, Körner C (2018) Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Mater Charact 143:163–70

    Article  Google Scholar 

  88. Ribeiro KSB, Mariani FE, Coelho RT (2020) A study of different deposition strategies in direct energy deposition (DED) processes. Procedia Manuf 48:663–670. https://doi.org/10.1016/j.promfg.2020.05.158

    Article  Google Scholar 

  89. Guan X, Zhao YF (2020) Modeling of the laser powder–based directed energy deposition process for additive manufacturing: a review. Int J Adv Manuf Technol 107:1959–1982. https://doi.org/10.1007/s00170-020-05027-0

    Article  Google Scholar 

  90. Yao XX, Ge P, Li JY, Wang YF, Li T, Liu WW, et al. Controlling the solidification process parameters of direct energy deposition additive manufacturing considering laser and powder properties. Comput Mater Sci 2020;182. https://doi.org/10.1016/j.commatsci.2020.109788

  91. Bhardwaj T, Shukla M, Paul CP, Bindra KS (2019) Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: parametric studies, microstructure and mechanical properties. J Alloys Compd 787:1238–1248

    Article  Google Scholar 

  92. Dilag J, Chen T, Li S, Bateman SA (2019) Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Addit Manuf 27:167–174. https://doi.org/10.1016/j.addma.2019.01.009

    Article  Google Scholar 

  93. Hill N, Haghi M (2014) Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyp J 20:221–227. https://doi.org/10.1108/RPJ-04-2013-0039

    Article  Google Scholar 

  94. Azam FI, Abdul Rani AM, Altaf K, Rao TVVLN, Zaharin HA (2018) An in-depth review on direct additive manufacturing of metals. IOP Conf Ser Mater Sci Eng 328. https://doi.org/10.1088/1757-899X/328/1/012005.

  95. Picard M, Mohanty AK, Misra M (2020) Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. vol. 10. Royal Society of Chemistry. https://doi.org/10.1039/d0ra04857g.

  96. Chen H-C, Bi G, Nai MLS, Wei J (2015) Enhanced welding efficiency in laser welding of highly reflective pure copper. J Mater Process Technol 216:287–293

    Article  Google Scholar 

  97. Li P, Gong Y, Xu Y, Qi Y, Sun Y, Zhang H (2019) Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: microstructure and mechanical properties. Arch Civ Mech Eng 19:820–831. https://doi.org/10.1016/j.acme.2019.03.002

    Article  Google Scholar 

  98. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Mater Des 118:256–265. https://doi.org/10.1016/j.matdes.2017.01.050

    Article  Google Scholar 

  99. Guddati S, Kiran ASK, Leavy M, Ramakrishna S (2019) Recent advancements in additive manufacturing technologies for porous material applications. Int J Adv Manuf Technol 105:193–215. https://doi.org/10.1007/s00170-019-04116-z

    Article  Google Scholar 

  100. Coogan TJ, Kazmer DO (2020) Prediction of interlayer strength in material extrusion additive manufacturing. Addit Manuf 35. https://doi.org/10.1016/j.addma.2020.101368.

  101. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J

  102. Ferreira I, Machado M, Alves F, Torres MA (2019) A review on fibre reinforced composite printing via FFF. Rapid Prototyp J 25:972–988. https://doi.org/10.1108/RPJ-01-2019-0004

    Article  Google Scholar 

  103. Ravichandran P, Anbu C, Poornachandran R, Shenbagarajan M, Yaswahnthan KS (2020) Design and development of 3d printer filament extruder for material reuse. Int J Sci Technol Res 9:3771–3775

    Google Scholar 

  104. Espalin D, Ramirez JA, Medina F, Wicker R (2014) Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyp J 20:236–244. https://doi.org/10.1108/RPJ-12-2012-0112

    Article  Google Scholar 

  105. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235. https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  106. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  107. Samykano M (2021) Mechanical property and prediction model for FDM-3D printed polylactic acid (PLA). Arab J Sci Eng 46:7875–7892. https://doi.org/10.1007/s13369-021-05617-4

    Article  Google Scholar 

  108. Dey A, Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process 2019;3. https://doi.org/10.3390/jmmp3030064.

  109. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (fdm) process parameter prediction and optimization using group method for data handling (gmdh) and differential evolution (de). Int J Adv Manuf Technol 73:509–519. https://doi.org/10.1007/s00170-014-5835-2

    Article  Google Scholar 

  110. Rajpurohit SR, Dave HK (2018) Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp J 24:1317–1324. https://doi.org/10.1108/RPJ-06-2017-0134

    Article  Google Scholar 

  111. Hambali RH, Cheong KM, Azizan N (2017) Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. IOP Conf Ser Mater Sci Eng 210. https://doi.org/10.1088/1757-899X/210/1/012063.

  112. Jayanth N, Senthil P, Prakash C (2018) Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process. Virtual Phys Prototyp 13:155–163. https://doi.org/10.1080/17452759.2018.1449565

    Article  Google Scholar 

  113. Chai Y, Li RW, Perriman DM, Chen S, Qin QH, Smith PN (2018) Laser polishing of thermoplastics fabricated using fused deposition modelling. Int J Adv Manuf Technol 96:4295–4302. https://doi.org/10.1007/s00170-018-1901-5

    Article  Google Scholar 

  114. Moradi M, Moghadam MK, Shamsborhan M, Bodaghi M, Falavandi H (2020) Post-processing of FDM 3d-printed polylactic acid parts by laser beam cutting. Polymers (Basel) 12. https://doi.org/10.3390/polym12030550.

  115. Hart KR, Dunn RM, Sietins JM, Hofmeister Mock CM, Mackay ME, Wetzel ED (2018) Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer (Guildf) 144:192–204. https://doi.org/10.1016/j.polymer.2018.04.024

    Article  Google Scholar 

  116. Mohamed AS, Maidin S, Mohamed SB, Muhamad MK, Wong JHU, Romlee WFA (2016) Improvement of surface finish by multiple piezoelectric transducers in fused deposition modelling. Int J Adv Sci Eng Inf Technol 6:764–9. https://doi.org/10.18517/ijaseit.6.5.957

    Article  Google Scholar 

  117. Andrzejewski J, Marciniak-Podsadna L (2020) Development of thermal resistant FDM printed blends. The preparation of GPET/PC blends and evaluation of material performance. Materials (Basel) 13:1–15. https://doi.org/10.3390/MA13092057

    Article  Google Scholar 

  118. Bhuvanesh Kumar M, Sathiya P (2020) Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107228

    Article  Google Scholar 

  119. Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers (Basel) 11. https://doi.org/10.3390/polym11071094.

  120. Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp J 22:281–299. https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  121. Gibson I, Rosen DW (2010) Additive manufacturing technologies. 1st edn. Rapid prototyping to direct digital manufacturing: rapid prototyping to direct digital manufacturing 2015:375–97. https://doi.org/10.1007/978-1-4419-1120-9

  122. Novakova-Marcincinova L, Novak-Marcincin J, Barna J, Torok J (2012) Special materials used in FDM rapid prototyping technology application. INES 2012 - IEEE 16th Int Conf Intell Eng Syst Proc 73–6. https://doi.org/10.1109/INES.2012.6249805.

  123. Gao X, Zhang D, Wen X, Qi S, Su Y, Dong X (2019) Fused deposition modeling with polyamide 1012. Rapid Prototyp J 25:1145–1154. https://doi.org/10.1108/RPJ-09-2018-0258

    Article  Google Scholar 

  124. Aslanzadeh S, Saghlatoon H, Honari MM, Mirzavand R, Montemagno C, Mousavi P (2018) Investigation on electrical and mechanical properties of 3D printed nylon 6 for RF/microwave electronics applications. Addit Manuf 21:69–75. https://doi.org/10.1016/j.addma.2018.02.016

    Article  Google Scholar 

  125. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. vol. 8. https://doi.org/10.1108/13552540210441166.

  126. Chen S, Lu J, Feng J (2018) 3D-printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind Eng Chem Res 57:3923–3931. https://doi.org/10.1021/acs.iecr.7b05074

    Article  Google Scholar 

  127. Todd L (2015) Fused deposition modeling with ABS-graphene nanocomposites. Composites 1–33. https://doi.org/10.1016/j.compositesa.2016.03.013.

  128. Singh S, Singh R (2020) Mechanical characterization and comparison of additive manufactured ABS, Polyflex™ and ABS/Polyflex™ blended functional prototypes. Rapid Prototyp J 26:225–237. https://doi.org/10.1108/RPJ-11-2017-0234

    Article  Google Scholar 

  129. Tambrallimath V, Keshavamurthy R, Saravanabavan D, Koppad PG (2019) Thermal behavior of PC-ABS based graphene filled polymer nanocomposite synthesized by FDM process. Compos Commun 15:129–34. https://doi.org/10.1016/j.coco.2019.07.009

    Article  Google Scholar 

  130. Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS-graphene nanocomposites. Compos Part A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  Google Scholar 

  131. Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater Des 25:587–594. https://doi.org/10.1016/j.matdes.2004.02.009

    Article  Google Scholar 

  132. Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos Part B Eng 176. https://doi.org/10.1016/j.compositesb.2019.107341.

  133. Nagendra J, Prasad MSG (2020) FDM process parameter optimization by taguchi technique for augmenting the mechanical properties of nylon–aramid composite used as filament material. J Inst Eng Ser C 101:313–322. https://doi.org/10.1007/s40032-019-00538-6

    Article  Google Scholar 

  134. Caminero MA, Chacón JM, García-Moreno I, Rodríguez GP (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos Part B Eng 148:93–103. https://doi.org/10.1016/j.compositesb.2018.04.054

    Article  Google Scholar 

  135. Rahim TNAT, Abdullah AM, Akil HM, Mohamad D, Rajion ZA (2017) The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym Lett 11:963–982. https://doi.org/10.3144/expresspolymlett.2017.92

    Article  Google Scholar 

  136. Zhang X, Fan W, Liu T (2020) Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos Commun 21. https://doi.org/10.1016/j.coco.2020.100413.

  137. Thomason JL (2002) The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos Part A Appl Sci Manuf 33:1641–52. https://doi.org/10.1016/S1359-835X(02)00179-3

    Article  Google Scholar 

  138. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  139. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113

    Google Scholar 

  140. Spoerk M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C et al (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos Part A Appl Sci Manuf 113:95–104. https://doi.org/10.1016/j.compositesa.2018.06.018

    Article  Google Scholar 

  141. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M (2019) International Journal of Biological Macromolecules poly ( lactic acid ) blends : processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  Google Scholar 

  142. Wang Q, Ji C, Sun L, Sun J, Liu J (2020) Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing. Molecules. https://doi.org/10.3390/molecules25102319

    Article  Google Scholar 

  143. Xiaoyong S, Liangcheng C, Honglin M, Peng G, Zhanwei B, Cheng L (2017) Experimental analysis of high temperature PEEK materials on 3D printing test. Proc - 9th Int Conf Meas Technol Mechatronics Autom ICMTMA 2017 13–6. https://doi.org/10.1109/ICMTMA.2017.0012.

  144. Wang P, Zou B, Xiao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol 271:62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  Google Scholar 

  145. Wang P, Zou B, Ding S, Huang C, Shi Z, Ma Y, et al (2020) Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos Part B Eng 198. https://doi.org/10.1016/j.compositesb.2020.108175.

  146. Arif MF, Kumar S, Varadarajan KM, Cantwell WJ (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259. https://doi.org/10.1016/j.matdes.2018.03.015

    Article  Google Scholar 

  147. Reese R (2015) Imece2015–52209 Mechanical properties of additively manufactured peek components using fused, vol 2015. Proc ASME 2015 Int Mech Eng Congr Expo Houston, Texas, pp 1–11

  148. Wang P, Zou B, Ding S, Huang C, Shi Z, Ma Y et al (2020) Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos Part B Eng 198:108175. https://doi.org/10.1016/j.compositesb.2020.108175

    Article  Google Scholar 

  149. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089

    Article  Google Scholar 

  150. Berretta S, Davies R, Shyng YT, Wang Y, Ghita O, Davies R, et al. Accepted manuscript 2017. https://doi.org/10.1016/j.polymertesting.2017.08.024.This.

  151. Jiang H, Aihemaiti P, Aiyiti W, Kasimu A (2022) Study Of the compression behaviours of 3D-printed PEEK/CFR-PEEK sandwich composite structures. Virtual Phys Prototyp 17:138–155

    Article  Google Scholar 

  152. Jiang H, Jia R, Aiyiti W, Aihemaiti P, Kasimu A (2023) Infill strategies for 3D-printed CF-PEEK/HA-PEEK honeycomb core-shell composite structures. J Manuf Process 92:338–349. https://doi.org/10.1016/j.jmapro.2023.02.058

    Article  Google Scholar 

  153. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  154. Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12:47–59. https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

  155. Rajan K, Samykano M, Kadirgama K, Harun WSW, Rahman MM (2022) Fused deposition modeling: process, materials, parameters, properties, and applications. Springer London. https://doi.org/10.1007/s00170-022-08860-7.

  156. Nabipour M, Akhoundi B, Bagheri SA (2019) Manufacturing of polymer/metal composites by fused deposition modeling process with polyethylene. J Appl Polym Sci 48717:1–9. https://doi.org/10.1002/app.48717

    Article  Google Scholar 

  157. Salem Bala A, bin Wahab S, binti Ahmad M (2016) Elements and materials improve the FDM products: a review. Adv Eng Forum 16:33–51. https://doi.org/10.4028/www.scientific.net/aef.16.33

    Article  Google Scholar 

  158. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  Google Scholar 

  159. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Mater Res Technol 8:3743–3753. https://doi.org/10.1016/j.jmrt.2019.06.034

    Article  Google Scholar 

  160. Chen G, Chen N, Wang Q (2019) Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 172:17–28. https://doi.org/10.1016/j.compscitech.2019.01.004

    Article  Google Scholar 

  161. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  162. Liu H, He H, Peng X, Huang B, Li J (2019) Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: effect of printing orientation on tensile performance. Polym Adv Technol 30:910–922. https://doi.org/10.1002/pat.4524

    Article  Google Scholar 

  163. Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669. https://doi.org/10.1177/0021998306069878

    Article  Google Scholar 

  164. Djafari Petroudy SR (2017) Physical and mechanical properties of natural fibers. Adv High Strength Nat Fibre Compos Constr 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0.

  165. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090. https://doi.org/10.1002/app.12496

    Article  Google Scholar 

  166. Wang C, Smith LM, Zhang W, Li M, Wang G, Shi SQ, et al (2019) Reinforcement of polylactic acid for fused deposition modeling process with nano particles treated bamboo powder. Polymers (Basel) 11. https://doi.org/10.3390/polym11071146.

  167. Reji Kumar R, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2020) Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: a futuristic approach and its technical challenges. Renew Sustain Energy Rev 133. https://doi.org/10.1016/j.rser.2020.110341

  168. Ozyhar T, Baradel F, Zoppe J (2020) Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly (lactic acid)(PLA) composites. Compos Part A Appl Sci Manuf 132:105827. https://doi.org/10.1016/j.compositesa.2020.105827

  169. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y et al (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205

    Article  Google Scholar 

  170. Aihemaiti P, Jia R, Aiyiti W, Jiang H, Kasimu A (2023) Study on 3D printing process of continuous polyglycolic acid fiber-reinforced polylactic acid degradable composites. Int J Bioprinting 9. https://doi.org/10.18063/ijb.734

  171. Aihemaiti P, Jiang H, Aiyiti W, Kasimu A (2022) Optimization of 3D printing parameters of biodegradable polylactic acid/hydroxyapatite composite bone plates. Int J Bioprinting 8. https://doi.org/10.18063/IJB.V8I1.490

  172. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos Part B Eng 56:717–723

    Article  Google Scholar 

  173. Asaithambi B, Ganesan G, Ananda KS (2014) Bio-composites: development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym 15:847–854

    Article  Google Scholar 

  174. Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672

    Article  Google Scholar 

  175. Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463

    Article  Google Scholar 

  176. Jiang N, Yu T, Li Y, Pirzada TJ, Marrow TJ (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid)(PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23

    Article  Google Scholar 

  177. Yu T, Ren J, Gu S, Yang M (2009) Synthesis and characterization of poly (lactic acid) and aliphatic polycarbonate copolymers. Polym Int 58:1058–1064

    Article  Google Scholar 

  178. Oksman K, Selin J-F (2004) Plastics and composites from polylactic acid. Nat. fibers, Plast. Compos., Springer 149–65

  179. Song X-Y, Wang M, Weng Y-X, Huang Z-G (2017) Effect of bamboo flour grafted lactide on the interfacial compatibility of polylactic acid/bamboo flour composites. Polymers (Basel) 9:323

    Article  Google Scholar 

  180. Gunti R, Ratna Prasad AV, Gupta A (2018) Mechanical and degradation properties of natural fiber-reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39:1125–1136

    Article  Google Scholar 

  181. Huang X, De Hoop CF, Xie J, Hse C-Y, Qi J, Hu T (2017) Characterization of biobased polyurethane foams employing lignin fractionated from microwave liquefied switchgrass. Int J Polym Sci 2017

  182. Sukmawan R, Takagi H, Nakagaito AN (2016) Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos Part B Eng 84:9–16

    Article  Google Scholar 

  183. Khalil HPSA, Alwani MS, Islam MN, Suhaily SS, Dungani R, H’ng YM, et al (2015) The use of bamboo fibres as reinforcements in composites. Biofiber reinforcements in composite materials, Elsevier, p. 488–524.

  184. El Messiry M, El Deeb R (2018) Investigation of 2-step technique for jute fabric reinforced polymer matrix composite. J Text Inst 109:1293–1303

    Article  Google Scholar 

  185. Mat Zubir NH, Sam ST, Santiagoo R, Noimam NZ, Wang J (2016) Tensile properties of rice straw fiber reinforced poly (lactic acid) biocomposites. Adv Mater Res 1133:598–602

    Article  Google Scholar 

  186. Pradhan R, Misra M, Erickson L, Mohanty A (2010) Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor. Bioresour Technol 101:8489–8491

    Article  Google Scholar 

  187. Ding WD, Pervaiz M, Sain M (2018) Cellulose-enabled polylactic acid (PLA) nanocomposites: recent developments and emerging trends. Funct Biopolym 183–216. https://doi.org/10.1007/978-3-319-66417-0_7

  188. Wang H, Memon H, Hassan EAM, Elagib THH, Hassan FEAA, Yu M (2019) Rheological and dynamic mechanical properties of abutilon natural straw and polylactic acid biocomposites. Int J Polym Sci. https://doi.org/10.1155/2019/8732520

  189. Wu Z, Wang X, Liu J, Chen X (2020) Mineral fibres: basalt. Handbook of Natural Fibres, Elsevier, pp 433–502. https://doi.org/10.1016/B978-0-12-818398-4.00015-3

  190. Sang L, Han S, Li Z, Yang X, Hou W (2019) Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos Part B Eng 164:629–639

    Article  Google Scholar 

  191. Kurniawan D, Kim BS, Lee HY, Lim JY (2013) Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites. Polym Plast Technol Eng 52:97–100

    Article  Google Scholar 

  192. Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73:87–100. https://doi.org/10.1007/s00170-014-5796-5

    Article  Google Scholar 

  193. Goharshadi EK, Ahmadzadeh H, Samiee S, Hadadian M, Debnath S, Reddy MM et al (2020) Influence of cutting speed and cooling method on the machinability of commercially pure titanium (CP-Ti) grade II. Int J Heat Mass Transf 10:67–76. https://doi.org/10.1038/s41598-020-71978-9

    Article  Google Scholar 

  194. Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16:467–481

    Article  Google Scholar 

  195. Ayrilmis N, Kariz M, Kwon JH, Kitek KM (2019) Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int J Adv Manuf Technol 102:2195–2200. https://doi.org/10.1007/s00170-019-03299-9

    Article  Google Scholar 

  196. Barrios JM, Romero PE (2019) Improvement of surface roughness and hydrophobicity in PETG parts manufactured via fused deposition modeling (FDM): an application in 3D printed self–cleaning parts. Materials (Basel) 12:2499

    Article  Google Scholar 

  197. Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122. https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  198. Jaisingh Sheoran A, Kumar H (2020) Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater Today Proc 21:1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296

    Article  Google Scholar 

  199. Feng L, Wang Y, Wei Q (2019) PA12 powder recycled from SLS for FDM. Polymers (Basel) 11:727

    Article  Google Scholar 

  200. Pandzic A, Hodzic D, Milovanovic A (2019) Effect of infill type and density on tensile properties of plamaterial for fdm process. Ann DAAAM Proc 30. https://doi.org/10.2507/30th.daaam.proceedings.074

  201. Lužanin O, Movrin D, Plan M (2014) Effect of layer thickness, deposition angle, and infill on maximum flexural force in Fdm-built specimens 39. https://doi.org/10.1108/RPJ-09-2015-0116

  202. Alafaghani A, Qattawi A (2018) Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J Manuf Process 36:164–174. https://doi.org/10.1016/j.jmapro.2018.09.025

    Article  Google Scholar 

  203. Yadav P, Sahai A, Sharma RS (2021) Strength and surface characteristics of FDM-based 3D printed PLA parts for multiple infill design patterns. J Inst Eng Ser C 102:197–207. https://doi.org/10.1007/s40032-020-00625-z

    Article  Google Scholar 

  204. Baich L, Manogharan G, Marie H (2015) Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manuf 5:308–319

    Article  Google Scholar 

  205. BusinessWire (2021) Global 3D printers market projected to showcase a CAGR of 35% through 2021: Technavio 2021. https://www.businesswire.com/news/home/20170418005579/en/Global-3D-Printers-Market-Projected-to-Showcase-a-CAGR-of-35-Through-2021-Technavio. Accessed 9 Nov 2022

  206. Blanco I, Cicala G, Ognibene G, Rapisarda M, Recca A (2018) Thermal properties of polyetherimide/polycarbonate blends for advanced applications. Polym Degrad Stab 154:234–238. https://doi.org/10.1016/j.polymdegradstab.2018.06.011

    Article  Google Scholar 

  207. Aw YY, Yeoh CK, Idris MA, Teh PL, Hamzah KA, Sazali SA (2018) Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites. Materials (Basel) 11. https://doi.org/10.3390/ma11040466

  208. Kumar P, Roy S, Hegde H, Bharti S, Kumar M (2019) 4D and 5D printing: healthcare’s new edge. 3D Print Technol Nanomedicine 143–63. https://doi.org/10.1016/B978-0-12-815890-6.00008-6.

  209. Kumaresan R, Samykano M, Kadirgama K, Ramasamy D, Keng NW, Pandey AK (2021) 3D printing technology for thermal application: a brief review. J Adv Res Fluid Mech Therm Sci 83:84–97. https://doi.org/10.37934/ARFMTS.83.2.8497

    Article  Google Scholar 

  210. Safran Nacelle Article - FDM Digital Solutions - 3D Printing News 2020. http://www.fdmdigitalsolutions.co.uk/safran-nacelle-article/. Accessed 10 Nov 2022

  211. Stipek R (2016) FDM additive manufacturing and its impact on the automotive industry. Fish Unitech. https://www.cati.com/blog/2016/08/fdm-additive-manufacturing-impact-automotive-industry/. Accessed 25 Dec 2022

  212. Javaid M, Haleem A (2019) Using additive manufacturing applications for design and development of food and agricultural equipments. Int J Mater Prod Technol 58:225–238. https://doi.org/10.1504/IJMPT.2019.097662

    Article  Google Scholar 

  213. Javaid M, Haleem A (2019) Industry 4.0 applications in medical field: a brief review. Curr Med Res Pract 9:102–9

    Article  Google Scholar 

  214. Anatomical Model Parts On Demand With 3D Printing | Stratasys Direct 2021. https://www.stratasysdirect.com/applications/functional-prototyping (accessed March 10, 2022).

  215. Gu P, Li L (2002) Fabrication of biomedical prototypes with locally controlled properties using FDM. CIRP Ann 51:181–184

    Article  Google Scholar 

  216. Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H et al (2013) Shaping tissue with shape memory materials. Adv Drug Deliv Rev 65:515–535. https://doi.org/10.1016/j.addr.2012.06.004

    Article  Google Scholar 

  217. Tran TN, Bayer IS, Heredia-Guerrero JA, Frugone M, Lagomarsino M, Maggio F et al (2017) Cocoa shell waste biofilaments for 3D printing applications. Macromol Mater Eng 302:1–10. https://doi.org/10.1002/mame.201700219

    Article  Google Scholar 

  218. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Reports 140:100543. https://doi.org/10.1016/j.mser.2020.100543

    Article  Google Scholar 

  219. Kabirian F, Ditkowski B, Zamanian A, Heying R, Mozafari M (2018) An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Mater Today Proc 5:15586–15594. https://doi.org/10.1016/j.matpr.2018.04.167

    Article  Google Scholar 

  220. Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z et al (2014) 3D-printed magnetic Fe 3 O 4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2:7583–7595

    Article  Google Scholar 

  221. Ghosh R, Sarkar R, Paul S, Pal SK (2016) Biocompatibility and drilling performance of beta tricalcium phosphate: yttrium phosphate bioceramic composite. Ceram Int 42:8263–8273

    Article  Google Scholar 

  222. Castles F, Isakov D, Lui A, Lei Q, Dancer CEJ, Wang Y et al (2016) Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci Rep 6:1–8

    Article  Google Scholar 

  223. Shen Y, Zhang T, Yang J, Zhang N, Huang T, Wang Y (2017) Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polym Compos 38:1982–1991

    Article  Google Scholar 

  224. Penumakala PK, Santo J, Thomas A (2020) A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng 201:108336. https://doi.org/10.1016/j.compositesb.2020.108336

    Article  Google Scholar 

  225. Post BK, Chesser PC, Lind RF, Roschli A, Love LJ, Gaul KT et al (2019) Using big area additive manufacturing to directly manufacture a boat hull mould. Virtual Phys Prototyp 14:123–129

    Article  Google Scholar 

  226. Maravola M, Conner B, Walker J, Cortes P (2019) Epoxy infiltrated 3D printed ceramics for composite tooling applications. Addit Manuf 25:59–63

    Google Scholar 

  227. Maravola M, Rutana D, Conner B, Macdonald E (2018) Development of a low coefficient of thermal expansion composite. Adv Manuf 1–5. https://doi.org/10.1115/IMECE2018-88594

  228. Sudbury TZ, Springfield R, Kunc V, Duty C (2017) An assessment of additive manufactured molds for hand-laid fiber reinforced composites. Int J Adv Manuf Technol 90:1659–1664

    Article  Google Scholar 

  229. Khoshnevis B (2004) Automated construction by contour crafting - related robotics and information technologies. Autom Constr 13:5–19. https://doi.org/10.1016/j.autcon.2003.08.012

    Article  Google Scholar 

  230. Frketic J, Dickens T, Ramakrishnan S (2017) Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: an additive review of contemporary and modern techniques for advanced materials manufacturing. Addit Manuf 14:69–86. https://doi.org/10.1016/j.addma.2017.01.003

    Article  Google Scholar 

  231. Aichner T (2018) Mass customization: do creative product configurations in ads drive behavioural intention and perceived product quality? Proc 8th Int Conf Mass Cust Pers – Community Eur MCP-CE 2018 206–10.

  232. Davim JP, Shunmugam MS (2018) Advances in additive manufacturing and joining proceedings. Proceedings of AIMTDR. https://doi.org/10.1007/978-981-32-9433-2

  233. El-Sayegh S, Romdhane L, Manjikian S (2020) A critical review of 3D printing in construction: benefits, challenges, and risks. Arch Civ Mech Eng 20:1–25. https://doi.org/10.1007/s43452-020-00038-w

    Article  Google Scholar 

  234. Fused deposition modelling of natural fibre/polylactic acid composites (2017) J Compos Sci 1:8. https://doi.org/10.3390/jcs1010008

    Article  Google Scholar 

  235. Tao Y, Wang H, Li Z, Li P, Shi SQ (2017) Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials (Basel) 10:1–6. https://doi.org/10.3390/ma10040339

    Article  Google Scholar 

  236. Mangat AS, Singh S, Gupta M, Sharma R (2018) Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyp J 24:1221–1234. https://doi.org/10.1108/RPJ-08-2017-0162

    Article  Google Scholar 

  237. Ertane EG, Dorner-Reisel A, Baran O, Welzel T, Matner V, Svoboda S (2018) Processing and wear behaviour of 3D printed PLA reinforced with biogenic carbon. Adv Tribol 2018. https://doi.org/10.1155/2018/1763182.

  238. Vigneshwaran K, Venkateshwaran N (2019) Statistical analysis of mechanical properties of wood-PLA composites prepared via additive manufacturing. Int J Polym Anal Charact 24:584–596. https://doi.org/10.1080/1023666X.2019.1630940

    Article  Google Scholar 

  239. Calì M, Pascoletti G, Gaeta M, Milazzo G, Ambu R (2020) New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manuf 51:698–703. https://doi.org/10.1016/j.promfg.2020.10.098

    Article  Google Scholar 

  240. Yu W, Dong L, Lei W, Shi J (2020) Rice straw powder/polylactic acid biocomposites for three-dimensional printing. Adv Compos Lett 29:1–8. https://doi.org/10.1177/2633366X20967360

    Article  Google Scholar 

  241. Jing H, He H, Liu H, Huang B, Zhang C (2021) Study on properties of polylactic acid/lemongrass fiber biocomposites prepared by fused deposition modeling. Polym Compos 42:973–986. https://doi.org/10.1002/pc.25879

    Article  Google Scholar 

  242. Kain S, Ecker JV, Haider A, Musso M, Petutschnigg A (2020) Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. Eur J Wood Wood Prod 78:65–74. https://doi.org/10.1007/s00107-019-01473-0

    Article  Google Scholar 

  243. Scaffaro R, Maio A, Gulino EF, Alaimo G, Morreale M (2021) Green composites based on pla and agricultural or marine waste prepared by fdm. Polymers (Basel) 13:1–17. https://doi.org/10.3390/polym13091361

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Universiti Malaysia Pahang, Malaysia, for providing funds and facilities under research grant RDU192216 to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

Mahendran Samykano: writing—original draft preparation, supervision, conceptualization.

Rajan Kumaresan: data curation, writing—original draft preparation.

Jeevendran Kananathan: writing—reviewing and editing.

Kumaran Kadirgama: supervision, writing—reviewing and editing.

Adarsh. K. Pandey: writing—reviewing and editing.

Corresponding author

Correspondence to Mahendran Samykano.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Consent to participate has been received from all co-authors before the work is submitted.

Consent for publication

Consent to publication has been received from all co-authors before the work is submitted.

Conflict of interest

The authors declare no competing interests.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The additive manufacturing (AM) process and its various techniques are discussed in detail. A get-to-know for newcomers.

• Fused filament fabrication (FFF) materials (polymers and polymer composites) and PLA/biocomposite are discussed in detail.

• Various parameters used in the FFF process are discussed.

• Applications of FDM in the various sectors.

• Research gaps in the PLA/biocomposite are presented for future work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samykano, M., Kumaresan, R., Kananathan, J. et al. An overview of fused filament fabrication technology and the advancement in PLA-biocomposites. Int J Adv Manuf Technol 132, 27–62 (2024). https://doi.org/10.1007/s00170-024-13394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13394-1

Keywords

Navigation