Skip to main content

Advertisement

Log in

A framework for optimizing process parameters in fused deposition modeling using predictive modeling coupled response surface methodology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fused deposition modeling (FDM) is a widely used additive manufacturing (AM) process due to its simplicity, cost-effectiveness, and low waste generation. The mechanical properties of FDM products are greatly influenced by the process parameters. Thus, it is important to use optimal process parameters to achieve desired mechanical properties. One way to determine the optimal process parameters is using response surface methodology (RSM) which has been widely implemented for determining optimal manufacturing process parameters. For RSM, experimental investigations are performed in a systematic way using design of experiments (DOE). However, in some cases, experimental data is not collected in a systematic manner using DOE. Additionally, it is expensive and time consuming to conduct experimental investigations of a well-designed DOE to acquire data. This results in generating insufficient experimental data for developing response surface models using RSM. To address these challenges, this study presents a streamlined five-step framework to optimize FDM process parameters for achieving desired mechanical properties of products. In this process, once experimental data is collected, it is analyzed and preprocessed to remove or repair any missing data. Next, this data is used to develop an artificial neural network (ANN) predictive model to predict the systematic DOE data necessary for developing response surface models. Finally, these models are used to optimize the process parameters for maximizing mechanical properties of FDM products. The efficacy of this framework is demonstrated in detail for a real-world FDM application with limited experimental data. This framework determines the four optimal process parameters for simultaneously maximizing three mechanical properties. By utilizing ANN and genetic algorithm-based optimization, this approach minimizes the need for extensive experiments. Thus, unlike any other work in the literature, this framework not only determines optimal FDM process parameters which results in achieving the desired mechanical properties, but also significantly reduces the time and resources required in the process, thereby paving the way for a more efficient manufacturing process. The optimized results obtained using this framework are found to be very close to experimental data, thereby establishing that the framework is effective for determining optimal parameters in case of limited or non-systematic DOE data. In future, the generic nature of the framework can be utilized to include other FDM process parameters, material characteristics affecting the properties, and different predictive modeling and optimization techniques. Finally, such a framework can be modified as necessary for utilizing it for other AM and traditional manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laverne F, Segonds F, Anwer N, Le Coq M (2015) Assembly based methods to support product innovation in design for additive manufacturing: an exploratory case study. ASME J Mech Des 137(12). https://doi.org/10.1115/1.4031589

  2. Bernard A, Fischer A (2002) New trends in rapid product development. CIRP Ann 51(2):635–652. https://doi.org/10.1016/S0007-8506(07)61704-1

    Article  Google Scholar 

  3. Chohan JS, Singh R (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp J 23(3):495–513. https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  4. Cao D (2023) Enhanced buckling strength of the thin-walled continuous carbon fiber–reinforced thermoplastic composite through dual coaxial nozzles material extrusion process. Int J Adv Manuf Technol 128(3):1305–1315. https://doi.org/10.1007/s00170-023-12014-8

    Article  Google Scholar 

  5. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng: A 301(2):125–130. https://doi.org/10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

  6. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89(11):3081–3090. https://doi.org/10.1002/app.12496

    Article  CAS  Google Scholar 

  7. Deka A, Nellippallil AB, Hall J (2022) Integrated design exploration of products, materials, and processes in additive manufacturing using inverse design method. Int J Interact Des Manuf (IJIDeM) 16(2):717–731. https://doi.org/10.1007/s12008-022-00873-6

    Article  Google Scholar 

  8. Cao D (2023) Fusion joining of thermoplastic composites with a carbon fabric heating element modified by multiwalled carbon nanotube sheets. Int J Adv Manuf Technol 128(9):4443–4453. https://doi.org/10.1007/s00170-023-12202-6

    Article  Google Scholar 

  9. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B: Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  CAS  Google Scholar 

  10. JaisinghSheoran A, Kumar H (2020) Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater Today: Proc 21:1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296

    Article  Google Scholar 

  11. Cao D, Bouzolin D, Lu H, Griffith DT (2023) Bending and shear improvements in 3D-printed core sandwich composites through modification of resin uptake in the skin/core interphase region. Comp B: Eng 264:110912. https://doi.org/10.1016/j.compositesb.2023.110912

    Article  CAS  Google Scholar 

  12. Melocchi A et al (2021) Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm 592:119901. https://doi.org/10.1016/j.ijpharm.2020.119901

    Article  CAS  PubMed  Google Scholar 

  13. Alhijjaj M, Nasereddin J, Belton P, Qi S (2019) Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics 11(12):633. https://doi.org/10.3390/pharmaceutics11120633

  14. Mia M, Dhar NR (2016) Response surface and neural network based predictive models of cutting temperature in hard turning. J Adv Res 7(6):1035–1044. https://doi.org/10.1016/j.jare.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc: Ser B (Methodological) 13(1):1–38. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

    Article  MathSciNet  Google Scholar 

  16. Camposeco-Negrete C, de Dios Calderón-Nájera J (2019) Optimization of energy consumption and surface roughness in slot milling of AISI 6061 T6 using the response surface method. Int J Adv Manuf Technol 103(9):4063–4069. https://doi.org/10.1007/s00170-019-03848-2

    Article  Google Scholar 

  17. Lmalghan R, Rao M C K, S A, Rao SS, Herbert MA (2018) Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization. Int J Precis Eng Manuf 19(5):695–704. https://doi.org/10.1007/s12541-018-0083-2

    Article  Google Scholar 

  18. Kosaraju S, Anne VG (2013) Optimal machining conditions for turning Ti-6Al-4V using response surface methodology. Adv Manuf 1(4):329–339. https://doi.org/10.1007/s40436-013-0047-9

    Article  Google Scholar 

  19. Nouioua M, Yallese MA, Khettabi R, Belhadi S, Bouhalais ML, Girardin F (2017) Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). Int J Adv Manuf Technol 93(5):2485–2504. https://doi.org/10.1007/s00170-017-0589-2

    Article  Google Scholar 

  20. Kumar Parida A, Maity K (2019) Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM). Measurement 137:375–381. https://doi.org/10.1016/j.measurement.2019.01.070

    Article  ADS  Google Scholar 

  21. Azzi A, Boulanouar L, Laouisi A, Mebrek A, Yallese MA (2022) Modeling and optimization of machining parameters to minimize surface roughness and maximize productivity when turning polytetrafluoroethylene (PTFE). Int J Adv Manuf Technol 123(1):407–430. https://doi.org/10.1007/s00170-022-10160-z

    Article  Google Scholar 

  22. Sathish S, Vivekanandan S (2016) Parametric optimization for floating drum anaerobic bio-digester using response surface methodology and artificial neural network. Alex Eng J 55(4):3297–3307. https://doi.org/10.1016/j.aej.2016.08.010

    Article  Google Scholar 

  23. Yang J-S, Mu T-H, Ma M-M (2019) Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chem 289:351–359. https://doi.org/10.1016/j.foodchem.2019.03.027

    Article  CAS  PubMed  Google Scholar 

  24. Seo J et al (2017) Multi-objective optimization of tungsten CMP slurry for advanced semiconductor manufacturing using a response surface methodology. Mater Des 117:131–138. https://doi.org/10.1016/j.matdes.2016.12.066

    Article  CAS  Google Scholar 

  25. Sajadi SM, Seyed Esfahani MM, Sörensen K (2011) Production control in a failure-prone manufacturing network using discrete event simulation and automated response surface methodology. Int J Adv Manuf Technol 53(1):35–46. https://doi.org/10.1007/s00170-010-2814-0

    Article  Google Scholar 

  26. Zhang H, Choi JP, Moon SK, Ngo TH (2020) A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Addit Manuf 33:101096. https://doi.org/10.1016/j.addma.2020.101096

    Article  Google Scholar 

  27. Shim D-s (2021) Effects of process parameters on additive manufacturing of aluminum porous materials and their optimization using response surface method. J Mater Res Technol 15:119–134. https://doi.org/10.1016/j.jmrt.2021.08.010

    Article  CAS  Google Scholar 

  28. Al-Ahmari A, Ashfaq M, Alfaify A, Abdo B, Alomar A, Dawud A (2016) Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method. J Mech Sci Technol 30(1):345–352. https://doi.org/10.1007/s12206-015-1239-y

    Article  Google Scholar 

  29. Srinivasan R, Pridhar T, Ramprasath LS, Charan NS, Ruban W (2020) Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater Today: Proc 27:1827–1832. https://doi.org/10.1016/j.matpr.2020.03.788

    Article  CAS  Google Scholar 

  30. Mohamed OA, Masood SH, Bhowmik JL (2016) Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl Math Model 40(23):10052–10073. https://doi.org/10.1016/j.apm.2016.06.055

    Article  Google Scholar 

  31. Wang Z, Li J, Wu W, Zhang D, Yu N (2021) Multitemperature parameter optimization for fused deposition modeling based on response surface methodology. AIP Adv 11(5):055315. https://doi.org/10.1063/5.0049357

    Article  ADS  Google Scholar 

  32. Equbal A, Sood AK, Equbal MI, Badruddin IA, Khan ZA (2021) RSM based investigation of compressive properties of FDM fabricated part. CIRP J Manuf Sci Technol 35:701–714. https://doi.org/10.1016/j.cirpj.2021.08.004

    Article  Google Scholar 

  33. Saad MS, Nor AM, Baharudin ME, Zakaria MZ, Aiman AF (2019) Optimization of surface roughness in FDM 3D printer using response surface methodology, particle swarm optimization, and symbiotic organism search algorithms. Int J Adv Manuf Technol 105(12):5121–5137. https://doi.org/10.1007/s00170-019-04568-3

    Article  Google Scholar 

  34. Radhwan H, Shayfull Z, Farizuan MR, Effendi MSM, Irfan AR (2019) Optimization parameter effects on the quality surface finish of the three-dimensional printing (3D-printing) fused deposition modeling (FDM) using RSM. AIP Conf Proc 2129(1):020155. https://doi.org/10.1063/1.5118163

  35. Yang L, Li S, Li Y, Yang M, Yuan Q (2019) Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts. J Mater Eng Perform 28(1):169–182. https://doi.org/10.1007/s11665-018-3784-x

    Article  CAS  Google Scholar 

  36. Yang Y, Zhang Y, Cai YD, Lu Q, Koric S, Shao C (2019) Hierarchical measurement strategy for cost-effective interpolation of spatiotemporal data in manufacturing. J Manuf Syst 53:159–168. https://doi.org/10.1016/j.jmsy.2019.09.009

    Article  Google Scholar 

  37. Ruschel E, Santos EAP, Loures EdFR (2017) Industrial maintenance decision-making: a systematic literature review. J Manuf Syst 45:180–194. https://doi.org/10.1016/j.jmsy.2017.09.003

    Article  Google Scholar 

  38. Celen M, Djurdjanovic D (2020) Integrated maintenance and operations decision making with imperfect degradation state observations. J Manuf Syst 55:302–316. https://doi.org/10.1016/j.jmsy.2020.03.010

    Article  Google Scholar 

  39. Yang Z, Lu Y, Yeung H, Kirshnamurty S (2020) 3D build melt pool predictive modeling for powder bed fusion additive manufacturing. Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 9: 40th Computers and Information in Engineering Conference (CIE). Virtual, Online. August 17–19, 2020. V009T09A046. ASME. https://doi.org/10.1115/DETC2020-22662

  40. Panda BN, Bahubalendruni MVAR, Biswal BB (2015) A general regression neural network approach for the evaluation of compressive strength of FDM prototypes. Neural Comput Appl 26(5):1129–1136. https://doi.org/10.1007/s00521-014-1788-5

    Article  Google Scholar 

  41. Yang Z, Hagedorn T, Eddy D, Krishnamurty S, Grosse I, Denno P, Lu Y, Witherell P (2017) A domain-driven approach to metamodeling in additive manufacturing. Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 37th Computers and Information in Engineering Conference. Cleveland, Ohio, USA. August 6–9, 2017. V001T02A028. ASME. https://doi.org/10.1115/DETC2017-67807

  42. Wei H, Peng C, Gao H, Wang X, Wang X (2019) On establishment and validation of a new predictive model for material removal in abrasive flow machining. Int J Mach Tools Manuf 138:66–79. https://doi.org/10.1016/j.ijmachtools.2018.12.003

    Article  Google Scholar 

  43. Xu L-H, Huang C-Z, Niu J-H, Wang J, Liu H-L, Wang X-D (2021) Prediction of cutting power and surface quality, and optimization of cutting parameters using new inference system in high-speed milling process. Adv Manuf 9(3):388–402. https://doi.org/10.1007/s40436-020-00339-6

    Article  Google Scholar 

  44. Shi J, Zhang Y, Sun Y, Cao W, Zhou L (2022) Tool life prediction of dicing saw based on PSO-BP neural network. Int J Adv Manuf Technol 123(11):4399–4412. https://doi.org/10.1007/s00170-022-10466-y

    Article  Google Scholar 

  45. Le Bourhis F, Kerbrat O, Dembinski L, Hascoet J-Y, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31. https://doi.org/10.1016/j.procir.2014.06.031

    Article  Google Scholar 

  46. Li Z, Zhang Z, Shi J, Wu D (2019) Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comput-Integr Manuf 57:488–495. https://doi.org/10.1016/j.rcim.2019.01.004

    Article  Google Scholar 

  47. Zhao J, Henriksson A, Asker L, Boström H (2015) Predictive modeling of structured electronic health records for adverse drug event detection. BMC Med Inform Decis Making 15(4):S1. https://doi.org/10.1186/1472-6947-15-S4-S1

    Article  Google Scholar 

  48. Wu H, Yang S, Huang Z, He J, Wang X (2018) Type 2 diabetes mellitus prediction model based on data mining. Inform Med Unlocked 10:100–107. https://doi.org/10.1016/j.imu.2017.12.006

    Article  Google Scholar 

  49. Kankal M, Akpınar A, Kömürcü Mİ, Özşahin TŞ (2011) Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Appl Energy 88(5):1927–1939. https://doi.org/10.1016/j.apenergy.2010.12.005

    Article  ADS  Google Scholar 

  50. Li X, Liu S, Zhao L, Meng X, Fang Y (2022) An integrated building energy performance evaluation method: from parametric modeling to GA-NN based energy consumption prediction modeling. J Build Eng 45:103571. https://doi.org/10.1016/j.jobe.2021.103571

    Article  Google Scholar 

  51. “National Institute of Standards and Technology Materials Data Repository.” https://materialsdata.nist.gov/

  52. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  Google Scholar 

  53. Kang J-Y, Song J-H (1998) Neural network applications in determining the fatigue crack opening load. Int J Fatigue 20(1):57–69. https://doi.org/10.1016/S0142-1123(97)00119-9

    Article  CAS  Google Scholar 

  54. Vaissier B, Pernot J-P, Chougrani L, Véron P (2019) Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Comp-Aided Des 110:11–23. https://doi.org/10.1016/j.cad.2018.12.007

    Article  Google Scholar 

  55. Deka A, Behdad S (2019) Part separation technique for assembly-based design in additive manufacturing using genetic algorithm. Procedia Manuf 34:764–771. https://doi.org/10.1016/j.promfg.2019.06.208

    Article  Google Scholar 

  56. Chockalingam K, Jawahar N, Praveen J (2016) Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm. Mater Manuf Process 31(15):2001–2010. https://doi.org/10.1080/10426914.2015.1127949

    Article  CAS  Google Scholar 

  57. Pandey PM, Thrimurthulu K, Reddy NV (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069–4089. https://doi.org/10.1080/00207540410001708470

    Article  Google Scholar 

  58. Fountas NA, Vaxevanidis NM (2021) Optimization of fused deposition modeling process using a virus-evolutionary genetic algorithm. Comput Ind 125:103371. https://doi.org/10.1016/j.compind.2020.103371

    Article  Google Scholar 

  59. Dev S, Srivastava R (2021) Optimization of fused deposition modeling (FDM) process parameters for flexural strength. Mater Today: Proc 44:3012–3016. https://doi.org/10.1016/j.matpr.2021.02.436

    Article  CAS  Google Scholar 

  60. Nguyen VH, Huynh TN, Nguyen TP, Tran TT (2020) Single and multi-objective optimization of processing parameters for fused deposition modeling in 3D printing technology. Int J Automot Mech Eng 17(1):7542–755. https://doi.org/10.15282/ijame.17.1.2020.03.0558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Angshuman Deka: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing, visualization.

John F. Hall: conceptualization, methodology, resources, writing—review and editing, visualization, supervision.

Corresponding author

Correspondence to John F. Hall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, A., Hall, J.F. A framework for optimizing process parameters in fused deposition modeling using predictive modeling coupled response surface methodology. Int J Adv Manuf Technol 131, 447–466 (2024). https://doi.org/10.1007/s00170-024-13078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13078-w

Keywords

Navigation