Skip to main content
Log in

Investigation on the high-feed milling of M28

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The outstanding combination of strength and fracture toughness as well as the high strength-to-weight ratio make the metastable β titanium alloy an ideal material for aviation applications. The machining of metastable ß titanium alloys remains a challenge due to their poor machinability. In this study, the high-feed milling of a novel metastable β titanium alloy M28 is investigated for the first time to evaluate the performance of a potential high efficiency machining approach for such hard-to-machine material as well as the corresponding surface quality. The cutting force, the effect of chip thickness, and the wear mechanism of the carbide tool coated with TiAlN-Al2O3 are investigated. The influence of feed rate on machined surface microstructures and microhardness of M28 are also studied. The ploughing effect of the inadequate feed-per-tooth in the high-feed milling is revealed in the cutting force experiment. The tool wear is dominated by the notch wear, and the cutting-edge degeneration induced by the carbide matrix fracture accelerates it. The mechanical stress-induced crack, which differs from the thermal crack presented in previous researches, leads to the uneven delamination of the TiAlN-Al2O3 coating. The feed-per-tooth several times than the conventional milling (from 0.6 and 0.8 mm/z) causes no damage to the microstructures while slight grain deformation (as thin as 2.54 μm) can be found as the feed-per-tooth reaches 1.0 mm/z. The microhardness of the machined surface shows a pronounced work hardening tendency of M28, while the tool wear leads to significant grain fragmentation and distortion at the surface and aggravates the work hardening. Since no white layer is found in the cutting of M28, high-feed milling shows the advantage of preventing heat-induced surface damage. It proves that high-feed milling is a promising approach for the high efficiency machining of the metastable titanium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Leyens C, Peters M (2003) Titanium and Titanium alloys. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527602119.ch2

    Book  Google Scholar 

  2. Cotton JD, Briggs RD, Boyer RR, Tamirisakandala S, Russo P, Shchetnikov N, Fanning JC (2015) State of the art in beta titanium alloys for airframe applications. JOM 67(6):1281–1303. https://doi.org/10.1007/s11837-015-1442-4

    Article  Google Scholar 

  3. Boyer R (2003) Titanium airframe applications: brief history, present applications and future trends. Mater Sci Forum 426-432:643–648. https://doi.org/10.4028/www.scientific.net/MSF.426-432.643

    Article  Google Scholar 

  4. Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing, UK. https://doi.org/10.1533/9780857095152.202

    Book  Google Scholar 

  5. Donachie MJ (2000) Titanium: a technical guide. Novelty, Ohio

  6. Storchak M, Zakiev I, Träris L.(2018) Mechanical properties of subsurface layers in the machining of the titanium alloy Ti10V2Fe3Al. J Mech Sci Technol 32(1):315-322. https://doi.org/10.1007/s12206-017-1231-9

  7. Younas M, Jaffery SHI, Khan A, Khan M (2021) Development and analysis of tool wear and energy consumption maps for turning of titanium alloy (Ti6Al4V). J Manuf Process 62:613–622. https://doi.org/10.1016/j.jmapro.2020.12.060

    Article  Google Scholar 

  8. Jaffery SH, Khan M, Sheikh NA, Mativenga P (2013) Wear mechanism analysis in milling of Ti-6Al-4V alloy. Proc Inst Mech Eng B J Eng Manuf 227(8):1148–1156. https://doi.org/10.1177/0954405413481210

    Article  Google Scholar 

  9. Machai C, Biermann D (2011) Machining of a hollow shaft made of β-titanium Ti-10V-2Fe-3Al. IEEE Int Symp Assemb Manuf 2011:1–6. https://doi.org/10.1109/ISAM.2011.5942364

    Article  Google Scholar 

  10. Li C, Mi X, Ye W, Hui S, Yu Y, Wang W (2013) Effect of solution temperature on microstructures and tensile properties of high strength Ti–6Cr–5Mo–5V–4Al alloy. Mater Sci Eng A 578:103–109. https://doi.org/10.1016/j.msea.2013.04.063

    Article  Google Scholar 

  11. Gao J, Li H, Hao X, Bowen P (2016) Fracture toughness optimisation in a hipped Ti-5553 alloy. Proc 13th World Conf Titanium:505–510. https://doi.org/10.1002/9781119296126.ch80

  12. Shi Z-f, Guo H-z, Zhang J-w, Yin J-n (2018) Microstructure−fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure. Trans Nonferrous Metals Soc China 28(12):2440–2448. https://doi.org/10.1016/S1003-6326(18)64890-3

    Article  Google Scholar 

  13. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  14. Machai C, Biermann D (2011) Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: cooling with carbon dioxide snow. J Mater Process Technol 211(6):1175–1183. https://doi.org/10.1016/j.jmatprotec.2011.01.022

    Article  Google Scholar 

  15. Machai C, Iqbal A, Biermann D, Upmeier T, Schumann S (2013) On the effects of cutting speed and cooling methodologies in grooving operation of various tempers of β-titanium alloy. J Mater Process Technol 213(7):1027–1037. https://doi.org/10.1016/j.jmatprotec.2013.01.021

    Article  Google Scholar 

  16. Rahman Rashid RA, Sun S, Wang G, Dargusch MS (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69. https://doi.org/10.1016/j.ijmachtools.2012.06.004

    Article  Google Scholar 

  17. Wagner V, Duc E (2014) Study of Ti-1023 milling with toroidal tool. Int J Adv Manuf Technol 75(9):1473–1491. https://doi.org/10.1007/s00170-014-6217-5

    Article  Google Scholar 

  18. Grove T, Denkena B, Maiß O, Krödel A, Schwab H, Kühn U (2018) Cutting mechanism and surface integrity in milling of Ti-5553 processed by selective laser melting. J Mech Sci Technol 32(10):4883–4892. https://doi.org/10.1007/s12206-018-0936-8

    Article  Google Scholar 

  19. An Q, Chen J, Tao Z, Ming W, Chen M (2020) Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys. Int J Refract Met Hard Mater 86:105091. https://doi.org/10.1016/j.ijrmhm.2019.105091

    Article  Google Scholar 

  20. Herranz S, Campa FJ, de Lacalle LNL, Rivero A, Lamikiz A, Ukar E, Sánchez JA, Bravo U (2005) The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems. Proc Inst Mech Eng B J Eng Manuf 219(11):789–801. https://doi.org/10.1243/095440505X32742

    Article  Google Scholar 

  21. Borysenko D, Karpuschewski B, Welzel F, Kundrák J, Felhő C (2019) Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. CIRP J Manuf Sci Technol 24:1–5. https://doi.org/10.1016/j.cirpj.2018.12.003

    Article  Google Scholar 

  22. Duplak J, Hatala M, Duplakova D, Steranka J (2018) Comprehensive analysis and study of the machinability of a high strength aluminum alloy (EN AW-AlZn5.5MgCu) in the high-feed milling. Adv Prod Eng Manag 13(4):455–465. https://doi.org/10.14743/apem2018.4.303

    Article  Google Scholar 

  23. Sun H, Xiao H, Li L (2016) Experimental study on cutting force and cutting power in high feed milling of Ti5Al5Mo5VCrFe. Mater Sci Forum 836-837:88–93. https://doi.org/10.4028/www.scientific.net/MSF.836-837.88

    Article  Google Scholar 

  24. Zimmermann R, Welling D, Venek T, Ganser P, Bergs T (2021) Tool wear progression of SiAlON ceramic end mills in five-axis high-feed rough machining of an Inconel 718 BLISK. Procedia CIRP 101:13–16. https://doi.org/10.1016/j.procir.2021.02.003

    Article  Google Scholar 

  25. Liu H, Schraknepper D, Bergs T (2022) Investigation of residual stresses and workpiece distortion during high-feed milling of slender stainless steel components. Procedia CIRP 108:495–500. https://doi.org/10.1016/j.procir.2022.03.077

    Article  Google Scholar 

  26. Ehsan S, Khan SA, Rehman M (2021) Defect-free high-feed milling of Ti-6Al-4V alloy via a combination of cutting and wiper inserts. Int J Adv Manuf Technol 114(1):641–653. https://doi.org/10.1007/s00170-021-06875-0

    Article  Google Scholar 

  27. Froes FH, Bomberger HB (1985) The beta titanium alloys. JOM 37(7):28–37. https://doi.org/10.1007/BF03259693

    Article  Google Scholar 

  28. International Organization for Standardization (1989) ISO 8688-2: Tool life testing in milling. Part 2: end milling. ISO

  29. Klocke F (2011) Manufacturing processes 1:cutting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11979-8

    Book  Google Scholar 

  30. Rahman Rashid RA, Bermingham MJ, Sun S, Wang G, Dargusch MS (2013) The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precis Eng 37(2):461–472. https://doi.org/10.1016/j.precisioneng.2012.12.002

    Article  Google Scholar 

  31. Kaynak Y, Gharibi A, Ozkutuk M (2018) Experimental and numerical study of chip formation in orthogonal cutting of Ti-5553 alloy: the influence of cryogenic, MQL, and high pressure coolant supply. Int J Adv Manuf Technol 94(1):1411–1428. https://doi.org/10.1007/s00170-017-0904-y

    Article  Google Scholar 

  32. Zhan H, Kent D, Wang G, Dargusch MS (2014) The dynamic response of a β titanium alloy to high strain rates and elevated temperatures. Mater Sci Eng A 607:417–426. https://doi.org/10.1016/j.msea.2014.04.028

    Article  Google Scholar 

  33. Choudhury IA, See NL, Zukhairi M (2005) Machining with chamfered tools. J Mater Process Technol 170(1):115–120. https://doi.org/10.1016/j.jmatprotec.2005.04.110

    Article  Google Scholar 

  34. Özel T (2003) Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Technol 141(2):284–293. https://doi.org/10.1016/S0924-0136(03)00278-4

    Article  Google Scholar 

  35. Ren H, Altintas Y (1999) Mechanics of machining with chamfered tools. J Manuf Sci Eng 122(4):650–659. https://doi.org/10.1115/1.1286368

    Article  Google Scholar 

  36. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  37. Stylianou R, Velic D, Daves W, Ecker W, Tkadletz M, Schalk N, Czettl C, Mitterer C (2020) Thermal crack formation in TiCN/α-Al2O3 bilayer coatings grown by thermal CVD on WC-Co substrates with varied Co content. Surf Coat Technol 392:125687. https://doi.org/10.1016/j.surfcoat.2020.125687

    Article  Google Scholar 

  38. Pu R, Yu Z, Hao X, Yan J, Han Z, Tan J, Lu L, Chen Z, Yu H (2023) Effect of Si content on microstructure, mechanical properties, and cutting performance of TiSiN/AlTiN dual-layer coating. J Manuf Process 88:134–144. https://doi.org/10.1016/j.jmapro.2023.01.022

    Article  Google Scholar 

  39. Lü W, Li G, Zhou Y, Liu S, Wang K, Wang Q (2020) Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy. J Alloys Compd 820:153137. https://doi.org/10.1016/j.jallcom.2019.153137

    Article  Google Scholar 

  40. Sui X, Li G, Jiang C, Wang K, Zhang Y, Hao J, Wang Q (2018) Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting. Ceram Int 44(5):5629–5635. https://doi.org/10.1016/j.ceramint.2017.12.210

    Article  Google Scholar 

  41. Kathrein M, Schintlmeister W, Wallgram W, Schleinkofer U (2003) Doped CVD Al2O3 coatings for high performance cutting tools. Surf Coat Technol 163-164:181–188. https://doi.org/10.1016/S0257-8972(02)00483-8

    Article  Google Scholar 

  42. Fallqvist M, Ruppi S, Olsson M, Ottosson M, Grehk TM (2012) Nucleation and growth of CVD α-Al2O3 on TixOy template. Surf Coat Technol 207:254–261. https://doi.org/10.1016/j.surfcoat.2012.06.087

    Article  Google Scholar 

  43. Huang S, Zhao Q, Wu C, Lin C, Zhao Y, Jia W, Mao C (2021) Effects of β-stabilizer elements on microstructure formation and mechanical properties of titanium alloys. J Alloys Compd 876:160085. https://doi.org/10.1016/j.jallcom.2021.160085

    Article  Google Scholar 

  44. Yumak N, Aslantaş K (2020) A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. J Mater Res Technol 9(6):15360–15380. https://doi.org/10.1016/j.jmrt.2020.10.088

    Article  Google Scholar 

  45. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274. https://doi.org/10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  46. la Monaca A, Liao Z, Axinte DA, M'Saoubi R, Hardy MC (2022) Can higher cutting speeds and temperatures improve the microstructural surface integrity of advanced Ni-base superalloys? CIRP Ann 71(1):113–116. https://doi.org/10.1016/j.cirp.2022.04.061

    Article  Google Scholar 

  47. Chen H, Qin H, Qin F, Li B, Yu Y, Li C (2023) Hot deformation behavior and microstructure evolution of Ti-6Cr-5Mo-5V-4Al-1Nb alloy. Crystals 13(2):182. https://doi.org/10.3390/cryst13020182

    Article  Google Scholar 

  48. Chong Y, Deng G, Yi J, Shibata A, Tsuji N (2019) On the strain hardening abilities of α+β titanium alloys: the roles of strain partitioning and interface length density. J Alloys Compd 811:152040. https://doi.org/10.1016/j.jallcom.2019.152040

    Article  Google Scholar 

  49. Wang P, Yin T, Qu S (2020) On the grain size dependent working hardening behaviors of severe plastic deformation processed metals. Scr Mater 178:171–175. https://doi.org/10.1016/j.scriptamat.2019.11.028

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52075251).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Yifan Jiang, Xu Yang, and Liangdong Ma. Data collection and analysis were performed by Yifan Jiang, Hui Tian, and Yinfei Yang. The first draft of the manuscript was written by Yifan Jiang with the instruction of Liang Li. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Yang, X., Tian, H. et al. Investigation on the high-feed milling of M28. Int J Adv Manuf Technol 129, 127–141 (2023). https://doi.org/10.1007/s00170-023-12005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12005-9

Keywords

Navigation