Skip to main content

Advertisement

Log in

Towards advanced manufacturing systems for large parts: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Large-mechanical-part machining is a very important trend for modern industry to develop, and it has attracted a lot of attention from advanced industries. As an important element of the research, the manufacturing system for large parts has been widely studied. In order to get a comprehensive understanding of this kind of system, the state of the art in several aspects including the classification of the system, major challenges facing each kind of system, structure and optimizes design of the system are summarized in this paper. The manufacturing system is divided into two categories: large workshop machine tools and light and agile machine systems. The design and optimization methods for large workshop machine tool structural parts are summarized. Common techniques for error compensation are also analyzed. Development of the light and agile machine system is stated, and its further classification is carried out. Significantly, features as well as advantages and disadvantages of different systems are analyzed. Finally, this paper gives out further research on the manufacturing systems for large parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J Chen, F Xie, X-J Liu, W Bi (2021) Stiffness evaluation of an adsorption robot for large-scale structural parts processing, J Mech Robot. 13 https://doi.org/10.1115/1.4050683.

  2. Jiang M, Wang X, Ke S, Zhang F, Zeng X (2017) Large scale layering laser surface texturing system based on high speed optical scanners and gantry machine tool. Robot Comput Integr Manuf 48:113–120. https://doi.org/10.1016/j.rcim.2017.03.005

    Article  Google Scholar 

  3. Tan B, Mao X, Liu H, Li B, He S, Peng F, Yin L (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82–83:11–20. https://doi.org/10.1016/j.ijmachtools.2014.03.002

    Article  Google Scholar 

  4. Allen J, Axinte D, Roberts P, Anderson R (2010) A review of recent developments in the design of special-purpose machine tools with a view to identification of solutions for portable in situ machining systems. Int J Adv Manuf Technol 50:843–857. https://doi.org/10.1007/s00170-010-2559-9

    Article  Google Scholar 

  5. Dong X, Palmer D, Axinte D, Kell J (2019) In-situ repair/maintenance with a continuum robotic machine tool in confined space. J Manuf Process 38:313–318. https://doi.org/10.1016/j.jmapro.2019.01.024

    Article  Google Scholar 

  6. Uriarte L, Zatarain M, Axinte D, Yagüe-Fabra J, Ihlenfeldt S, Eguia J, Olarra A (2013) Machine tools for large parts. CIRP Ann 62:731–750. https://doi.org/10.1016/j.cirp.2013.05.009

    Article  Google Scholar 

  7. XJ Liu, Z Xie, F Xie, J Wang (2019) Design and development of a portable machining robot with parallel kinematics, in: 2019 16th International Conference on Ubiquitous Robots (UR), 133–136.https://doi.org/10.1109/URAI.2019.8768593

  8. Kurita T, Hattori M (2005) Development of new-concept desk top size machine tool. Int J Mach Tools Manuf 45:959–965. https://doi.org/10.1016/j.ijmachtools.2004.10.009

    Article  Google Scholar 

  9. Olarra A, Axinte D, Uriarte L, Bueno R (2017) Machining with the WalkingHex: a walking parallel kinematic machine tool for in situ operations. CIRP Ann 66:361–364. https://doi.org/10.1016/j.cirp.2017.04.050

    Article  Google Scholar 

  10. Law M, Rentzsch H, Ihlenfeldt S (2016) Predicting mobile machine tool dynamics by experimental dynamic substructuring. Int J Mach Tools Manuf 108:127–134. https://doi.org/10.1016/j.ijmachtools.2016.06.006

    Article  Google Scholar 

  11. Meng J, Wang S, Li G, Jiang L, Zhang X, Liu C, Xie Y (2021) Iterative-learning error compensation for autonomous parking of mobile manipulator in harsh industrial environment. Robot Comput Integr Manuf 68:102077. https://doi.org/10.1016/j.rcim.2020.102077

    Article  Google Scholar 

  12. Kim SH, Nam E, Ha TI, Hwang S-H, Lee JH, Park S-H, Min B-K (2019) Robotic machining: a review of recent progress. Int J Precis Eng Manuf 20:1629–1642. https://doi.org/10.1007/s12541-019-00187-w

    Article  Google Scholar 

  13. Nielsen I, Dang Q-V, Bocewicz G, Banaszak Z (2017) A methodology for implementation of mobile robot in adaptive manufacturing environments. J Intell Manuf 28:1171–1188. https://doi.org/10.1007/s10845-015-1072-2

    Article  Google Scholar 

  14. Möhring H-C, Brecher C, Abele E, Fleischer J, Bleicher F (2015) Materials in machine tool structures. CIRP Ann 64:725–748. https://doi.org/10.1016/j.cirp.2015.05.005

    Article  Google Scholar 

  15. VenkataRamana M, Thyla PR, Mahendrakumar N, Praveena K (2021) Selection of resin and aggregates for particulate polymer concrete machine tool structures-A review. Mater Today: Proc 46:8621–8628. https://doi.org/10.1016/j.matpr.2021.03.595

    Article  Google Scholar 

  16. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38. https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  17. Iglesias A, TanerTunç L, Özsahin O, Franco O, Munoa J, Budak E (2022) Alternative experimental methods for machine tool dynamics identification: a review. Mech Syst Signal Process 170:108837. https://doi.org/10.1016/j.ymssp.2022.108837

    Article  Google Scholar 

  18. Dunaj P, Powałka B, Berczyński S, Chodźko M, Okulik T (2020) Increasing lathe machining stability by using a composite steel–polymer concrete frame. CIRP J Manuf Sci Technol 31:1–13. https://doi.org/10.1016/j.cirpj.2020.09.009

    Article  Google Scholar 

  19. Dunaj P, Berczyński S, Chodźko M (2020) Method of modeling steel-polymer concrete frames for machine tools. Compos. Struct. 242:112197. https://doi.org/10.1016/j.compstruct.2020.112197

    Article  Google Scholar 

  20. Dunaj P, Marchelek K, Berczyński S, Mizrak B (2020) Rigid finite element method in modeling composite steel-polymer concrete machine tool frames. Materials 13:3151. https://doi.org/10.3390/ma13143151

    Article  Google Scholar 

  21. Dunaj P, Berczyński S, Chodźko M, Niesterowicz B (2020) Finite element modeling of the dynamic properties of composite steel–polymer concrete beams. Materials 13:1630. https://doi.org/10.3390/ma13071630

    Article  Google Scholar 

  22. Inoue T, Kizaki T, Sugita N (2022) Structural components with sensing capability of three-dimensional temperature distribution for thermal deformation prediction. Precis Eng 75:153–166. https://doi.org/10.1016/j.precisioneng.2021.12.010

    Article  Google Scholar 

  23. Kulíšek V, Růžička M, Vrba P, Smolík J, Janota M (2019) Physico-mechanical properties of composite structural parts for machine tools. Materials Today: Proc 12:288–297. https://doi.org/10.1016/j.matpr.2019.03.126

    Article  Google Scholar 

  24. Dunaj P, Berczyński S, Miądlicki K, Irska I, Niesterowicz B (2020) Increasing damping of thin-walled structures using additively manufactured vibration eliminators. Materials 13:2125. https://doi.org/10.3390/ma13092125

    Article  Google Scholar 

  25. Lee DG, Chang SH, Kim HS (1998) Damping improvement of machine tool columns with polymer matrix fiber composite material. Compos Struct 43:155–163. https://doi.org/10.1016/S0263-8223(98)00106-8

    Article  Google Scholar 

  26. Lee DG, Do Suh J, Sung Kim H, Min Kim J (2004) Design and manufacture of composite high speed machine tool structures. Compos Sci Technol 64:1523–1530. https://doi.org/10.1016/j.compscitech.2003.10.021

    Article  Google Scholar 

  27. Suh JD, Lee DG, Kegg R (2002) Composite machine tool structures for high speed milling machines. CIRP Ann 51:285–288. https://doi.org/10.1016/S0007-8506(07)61518-2

    Article  Google Scholar 

  28. Aggogeri F, Borboni A, Merlo A, Pellegrini N, Ricatto R (2017) Vibration damping analysis of lightweight structures in machine tools. Materials 10:297. https://doi.org/10.3390/ma10030297

    Article  Google Scholar 

  29. F Aggogeri, A Borboni, A Merlo, N Pellegrini, R Adamini, C Taesi (2018) Design of damped structures to increase machine tool dynamical performance, in: ASME 2018 International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/imece2018-87912

  30. Möhring HC, Müller M, Krieger J, Multhoff J, Plagge C, de Wit J, Misch S (2020) Intelligent lightweight structures for hybrid machine tools. Prod Eng Res Devel 14:583–600. https://doi.org/10.1007/s11740-020-00988-3

    Article  Google Scholar 

  31. Neugebauer R, Lies C, Hohlfeld J, Hipke T (2007) Adhesion in sandwiches with aluminum foam core. Prod Eng Res Devel 1:271–278. https://doi.org/10.1007/s11740-007-0046-4

    Article  Google Scholar 

  32. Chen T-C, Chen Y-J, Hung M-H, Hung J-P (2016) Design analysis of machine tool structure with artificial granite material. Adv Mech Eng 8:1687814016656533. https://doi.org/10.1177/1687814016656533

    Article  Google Scholar 

  33. Chinnuraj S, Thyla PR, Elango S, Venugopal PR, Mohanram PV, Nataraj M, Mohanraj S, Manojkumar KN, Ayyasamy S (2020) Static and dynamic behavior of steel-reinforced epoxy granite CNC lathe bed using finite element analysis. Proc Inst Mech Eng L 234:595–609. https://doi.org/10.1177/1464420720904606

    Article  Google Scholar 

  34. Venugopal PR, Dhanabal P, Thyla PR, Mohanraj S, Nataraj M, Ramu M, Sonawane H (2019) Design and analysis of epoxy granite vertical machining centre base for improved static and dynamic characteristics. Proc Inst Mech Eng L 234:481–495. https://doi.org/10.1177/1464420719890892

    Article  Google Scholar 

  35. Venugopal PR, Kalayarasan M, Thyla PR, Mohanram PV, Nataraj M, Mohanraj S, Sonawane H (2019) Structural investigation of steel-reinforced epoxy granite machine tool column by finite element analysis. Proc Inst Mech Eng L 233:2267–2279. https://doi.org/10.1177/1464420719840592

    Article  Google Scholar 

  36. Marichelvam MK, Kandakodeeswaran K, Geetha M (2021) Development of hybrid composite materials for machine tool structures. Materials Today: Proceedings 47:6746–6751. https://doi.org/10.1016/j.matpr.2021.05.125

    Article  Google Scholar 

  37. Liu S, Li Y, Liao Y, Guo Z (2014) Structural optimization of the cross-beam of a gantry machine tool based on grey relational analysis. Struct Multidiscip Optim 50:297–311. https://doi.org/10.1007/s00158-013-1041-3

    Article  Google Scholar 

  38. Besharati SR, Dabbagh V, Amini H, Sarhan AAD, Akbari J, Hamdi M, Ong ZC (2015) Multi-objective selection and structural optimization of the gantry in a gantry machine tool for improving static, dynamic, and weight and cost performance. Concurr Eng 24:83–93. https://doi.org/10.1177/1063293X15597047

    Article  Google Scholar 

  39. Fei Y, Chen X, Li Y, Liao G, Zhang W, Zhang Y (2021) Modeling and optimization of B-axis hydraulic delay for gantry-type CNC machine tool. J Phys: Conf Ser 1820:012129. https://doi.org/10.1088/1742-6596/1820/1/012129

    Article  Google Scholar 

  40. Xiang S, Deng M, Li H, Du Z, Yang J (2019) Cross-rail deformation modeling, measurement and compensation for a gantry slideway grinding machine considering thermal effects. Meas Sci Technol 30:065007. https://doi.org/10.1088/1361-6501/ab1232

    Article  Google Scholar 

  41. Zhao Z, Wang Y, Wang Z, Liu J (2020) Dynamic behaviour of spindle on large EDM machine induced by high-speed jump motion with different control strategies. Arab J Sci Eng 45:5363–5374. https://doi.org/10.1007/s13369-019-04318-3

    Article  Google Scholar 

  42. Ji Q, Li C, Zhu D, Jin Y, Lv Y, He J (2020) Structural design optimization of moving component in CNC machine tool for energy saving. J Clean Prod 246:118976. https://doi.org/10.1016/j.jclepro.2019.118976

    Article  Google Scholar 

  43. Lv Y, Li C, Jin Y, He J, Li J (2021) Energy saving design of the spindle of CNC lathe by structural optimization. Int J Adv Manuf Technol 114:541–562. https://doi.org/10.1007/s00170-021-06758-4

    Article  Google Scholar 

  44. Triebe MJ, Zhao F, Sutherland JW (2022) Modelling the effect of slide table mass on machine tool energy consumption: The role of lightweighting. J Manuf Syst 62:668–680. https://doi.org/10.1016/j.jmsy.2022.02.003

    Article  Google Scholar 

  45. Liu S, Du Y, Lin M (2019) Study on lightweight structural optimization design system for gantry machine tool. Concurr Eng 27:170–185. https://doi.org/10.1177/1063293X19832940

    Article  Google Scholar 

  46. Kroll L, Blau P, Wabner M, Frieß U, Eulitz J, Klärner M (2011) Lightweight components for energy-efficient machine tools. CIRP J Manuf Sci Technol 4:148–160. https://doi.org/10.1016/j.cirpj.2011.04.002

    Article  Google Scholar 

  47. Sun L, Yang S, Zhao P, Wu P, Long X, Jiang Z (2015) Dynamic and static analysis of the key vertical parts of a large scale ultra-precision optical aspherical machine tool. Procedia CIRP 27:247–253. https://doi.org/10.1016/j.procir.2015.04.073

    Article  Google Scholar 

  48. Sonawane H, Subramanian T (2017) Improved dynamic characteristics for machine tools structure using filler materials. Procedia CIRP 58:399–404. https://doi.org/10.1016/j.procir.2017.03.239

    Article  Google Scholar 

  49. Xiao W, Xu Z, Bian H, Li Z (2021) Lightweight heavy-duty CNC horizontal lathe based on particle damping materials. Mech Syst Signal Process 147:107127. https://doi.org/10.1016/j.ymssp.2020.107127

    Article  Google Scholar 

  50. Yüksel E, Budak E, Ertürk AS (2017) The effect of linear guide representation for topology optimization of a five-axis milling machine. Procedia CIRP 58:487–492. https://doi.org/10.1016/j.procir.2017.03.257

    Article  Google Scholar 

  51. Liu H, Li B, Yang Z, Hong J (2017) Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm. J Manuf Syst 43:375–384. https://doi.org/10.1016/j.jmsy.2017.02.002

    Article  Google Scholar 

  52. Zhang H, Ding X, Dong X, Xiong M (2018) Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena. Struct Multidiscip Optim 57:2323–2338. https://doi.org/10.1007/s00158-017-1862-6

    Article  Google Scholar 

  53. Li B, Hong J, Liu Z (2014) Stiffness design of machine tool structures by a biologically inspired topology optimization method. Int J Mach Tools Manuf 84:33–44. https://doi.org/10.1016/j.ijmachtools.2014.03.005

    Article  Google Scholar 

  54. Yan S, Li B, Hong J (2015) Bionic design and verification of high-precision machine tool structures. Int J Adv Manuf Technol 81:73–85. https://doi.org/10.1007/s00170-015-7155-6

    Article  Google Scholar 

  55. Li B, Hong J, Liu Z (2017) A novel topology optimization method of welded box-beam structures motivated by low-carbon manufacturing concerns. J Clean Prod 142:2792–2803. https://doi.org/10.1016/j.jclepro.2016.10.189

    Article  Google Scholar 

  56. Feng S, Zhang W, Meng L, Xu Z, Chen L (2021) Stiffener layout optimization of shell structures with B-spline parameterization method. Struct Multidiscip Optim 63:2637–2651. https://doi.org/10.1007/s00158-021-02873-8

    Article  MathSciNet  Google Scholar 

  57. Apprich S, Wulle F, Lechler A, Pott A, Verl A (2016) Approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools for vibration reduction. Procedia CIRP 41:812–817. https://doi.org/10.1016/j.procir.2015.12.014

    Article  Google Scholar 

  58. Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60:14–26. https://doi.org/10.1016/j.ijmachtools.2012.04.003

    Article  Google Scholar 

  59. YB Huang, KC Fan, ZF Lou, W Sun (2020) A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles. Int J Mach Tools Manuf. 151 https://doi.org/10.1016/j.ijmachtools.2020.103527.

  60. Q Li, W Wang, J Zhang, R Shen, H Li, Z Jiang (2019) Measurement method for volumetric error of five-axis machine tool considering measurement point distribution and adaptive identification process. Int J Mach Tools Manuf. 147 https://doi.org/10.1016/j.ijmachtools.2019.103465.

  61. Xing K, Achiche S, Mayer JRR (2019) Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures. Int J Mach Tools Manuf 138:80–93. https://doi.org/10.1016/j.ijmachtools.2018.12.002

    Article  Google Scholar 

  62. Li Z, Feng W, Yang J, Huang Y (2016) An investigation on modeling and compensation of synthetic geometric errors on large machine tools based on moving least squares method. Proc Inst Mech Eng B J Eng Manuf 232:412–427. https://doi.org/10.1177/0954405416645985

    Article  Google Scholar 

  63. Qin X, Zhu S, Wang Y, Gong Q (2016) A measuring and optimizing method of precision consistency for five-axis multi-spindle gantry machine. Procedia CIRP 56:524–527. https://doi.org/10.1016/j.procir.2016.10.103

    Article  Google Scholar 

  64. Wu J, Cheng L, Guo Y, Li J, Ke Y (2022) Dynamic modeling and parameter identification for a gantry-type automated fiber placement machine combined with hydraulic balance system and nonlinear friction. CIRP J Manuf Sci Technol 37:388–400. https://doi.org/10.1016/j.cirpj.2022.02.011

    Article  Google Scholar 

  65. Feng WL, Yao XD, Azamat A, Yang JG (2015) Straightness error compensation for large CNC gantry type milling centers based on B-spline curves modeling. Int J Mach Tools Manuf 88:165–174. https://doi.org/10.1016/j.ijmachtools.2014.09.006

    Article  Google Scholar 

  66. Chen GS, Mei XS, Li HL (2013) Geometric error modeling and compensation for large-scale grinding machine tools with multi-axes. Int J Adv Manuf Technol 69:2583–2592. https://doi.org/10.1007/s00170-013-5203-7

    Article  Google Scholar 

  67. Li T, Liu M, Li R, Liu Y, Tan Y, Zhou Z (2020) FBG-based online monitoring for uncertain loading-induced deformation of heavy-duty gantry machine tool base. Mech Syst Signal Process 144:106864. https://doi.org/10.1016/j.ymssp.2020.106864

    Article  Google Scholar 

  68. Kono D, Mizuno S, Muraki T, Nakaminami M (2019) A machine tool motorized spindle with hybrid structure of steel and carbon fiber composite. CIRP Ann 68:389–392. https://doi.org/10.1016/j.cirp.2019.04.022

    Article  Google Scholar 

  69. Shi H, He B, Yue Y, Min C, Mei X (2019) Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool. Appl Therm Eng 161:114150. https://doi.org/10.1016/j.applthermaleng.2019.114150

    Article  Google Scholar 

  70. Abdulshahed AM, Longstaff AP, Fletcher S, Potdar A (2016) Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model. J Manuf Syst 41:130–142. https://doi.org/10.1016/j.jmsy.2016.08.006

    Article  Google Scholar 

  71. Gomez-Acedo E, Olarra A, Orive J, Lopez de la Calle LN (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with Kalman filter. Int J Mach Tools Manuf 75:100–108. https://doi.org/10.1016/j.ijmachtools.2013.09.005

    Article  Google Scholar 

  72. Li T, Li F, Jiang Y, Wang H (2017) Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining. Int J Adv Manuf Technol 92:3073–3092. https://doi.org/10.1007/s00170-017-0353-7

    Article  Google Scholar 

  73. Li F, Li T, Wang H, Jiang Y (2017) A temperature sensor clustering method for thermal error modeling of heavy milling machine tools. Appl Sci 7:82. https://doi.org/10.3390/app7010082

    Article  Google Scholar 

  74. Liang YC, Li WD, Lou P, Hu JM (2022) Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture. J Manuf Syst 62:950–963. https://doi.org/10.1016/j.jmsy.2020.10.008

    Article  Google Scholar 

  75. Zhao Z, Wang Y, Wang Z, Liu J (2019) Thermal analysis for the large precision EDM machine tool considering the spark energy during long-time processing. J Mech Sci Technol 33:773–782. https://doi.org/10.1007/s12206-019-0132-5

    Article  Google Scholar 

  76. Mareš M, Horejš O (2017) Modelling of cutting process impact on machine tool thermal behaviour based on experimental data. Procedia CIRP 58:152–157. https://doi.org/10.1016/j.procir.2017.03.208

    Article  Google Scholar 

  77. Li H, Zhang P, Deng M, Xiang S, Du Z, Yang J (2020) Thermally induced comprehensive error modeling and compensation for gantry machine tools with grating scale in large structure machining. Int J Adv Manuf Technol 107:1367–1376. https://doi.org/10.1007/s00170-020-05104-4

    Article  Google Scholar 

  78. Urbikain G, Campa FJ, Zulaika JJ, López de Lacalle LN, Alonso MA, Collado V (2015) Preventing chatter vibrations in heavy-duty turning operations in large horizontal lathes. J Sound Vib 340:317–330. https://doi.org/10.1016/j.jsv.2014.12.002

    Article  Google Scholar 

  79. Axinte DA, Abdul Shukor S, Bozdana AT (2010) An analysis of the functional capability of an in-house developed miniature 4-axis machine tool. Int J Mach Tools Manuf 50:191–203. https://doi.org/10.1016/j.ijmachtools.2009.10.005

    Article  Google Scholar 

  80. Eguia J, Uriarte L, Lamikiz A (2016) Analysis, optimization and accuracy assessment of special-purpose portable machines by virtual techniques. Int J Mach Tools Manuf 111:31–42. https://doi.org/10.1016/j.ijmachtools.2016.09.006

    Article  Google Scholar 

  81. Okazaki Y, Mishima N, Ashida K (2005) Microfactory—concept, history, and developments. J Manuf Sci Eng 126:837–844. https://doi.org/10.1115/1.1823491

    Article  Google Scholar 

  82. Cho S-K, Kim H-J, Chang S-H (2011) The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight. Compos Struct 93:492–501. https://doi.org/10.1016/j.compstruct.2010.08.030

    Article  Google Scholar 

  83. Brecher C, Utsch P, Wenzel C (2009) Five-axes accuracy enhancement by compact and integral design. CIRP Ann 58:355–358. https://doi.org/10.1016/j.cirp.2009.03.119

    Article  Google Scholar 

  84. Brecher C, Utsch P, Klar R, Wenzel C (2010) Compact design for high precision machine tools. Int J Mach Tools Manuf 50:328–334. https://doi.org/10.1016/j.ijmachtools.2009.11.007

    Article  Google Scholar 

  85. Neugebauer R, Wabner M, Rentzsch H, Ihlenfeldt S (2011) Structure principles of energy efficient machine tools. CIRP J Manuf Sci Technol 4:136–147. https://doi.org/10.1016/j.cirpj.2011.06.017

    Article  Google Scholar 

  86. R Neugebauer, U Priber, H Rentzsch, S Ihlenfeldt, D Hoffmann (2012) Mobile systems for machining large work pieces, in: H.A. ElMaraghy (Ed.) Enabling manufacturing competitiveness and economic sustainability, Springer Berlin Heidelberg, Berlin, Heidelberg. 135–140.https://doi.org/10.1007/978-3-642-23860-4_22

  87. Law M, Rentzsch H, Ihlenfeldt S (2015) Development of a dynamic substructuring framework to facilitate in situ machining solutions using mobile machine tools. Procedia Manuf 1:756–767. https://doi.org/10.1016/j.promfg.2015.09.054

    Article  Google Scholar 

  88. Pritschow G (2000) Parallel kinematic machines (PKM) – limitations and new solutions. CIRP Ann 49:275–280. https://doi.org/10.1016/S0007-8506(07)62945-X

    Article  Google Scholar 

  89. Neugebauer R, Schwaar M, St I, Pritschow G, Eppler C, Garber T (2002) New approaches to machine structures to overcome the limits of classical parallel structures. CIRP Ann 51:293–296. https://doi.org/10.1016/S0007-8506(07)61520-0

    Article  Google Scholar 

  90. Shneor Y, Portman VT (2010) Stiffness of 5-axis machines with serial, parallel, and hybrid kinematics: Evaluation and comparison. CIRP Ann 59:409–412. https://doi.org/10.1016/j.cirp.2010.03.020

    Article  Google Scholar 

  91. Law M, Rentzsch H, Ihlenfeldt S (2014) Evaluating mobile machine tool dynamics by substructure synthesis. Adv Mat Res 1018:373–380. https://doi.org/10.4028/www.scientific.net/AMR.1018.373

    Article  Google Scholar 

  92. Dai X, Song S, Xu W, Huang Z, Gong D (2021) Modal space neural network compensation control for Gough-Stewart robot with uncertain load. Neurocomputing 449:245–257. https://doi.org/10.1016/j.neucom.2021.03.119

    Article  Google Scholar 

  93. Rentzsch H, Kolouch M, Putz M (2017) Application of substructure techniques to predict cutting stability for mobile machine tools. Procedia CIRP 58:110–115. https://doi.org/10.1016/j.procir.2017.03.205

    Article  Google Scholar 

  94. Tunc LT, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830. https://doi.org/10.1007/s00170-015-7600-6

    Article  Google Scholar 

  95. Axinte DA, Allen JM, Anderson R, Dane I, Uriarte L, Olara A (2011) Free-leg Hexapod: a novel approach of using parallel kinematic platforms for developing miniature machine tools for special purpose operations. CIRP Ann 60:395–398. https://doi.org/10.1016/j.cirp.2011.03.024

    Article  Google Scholar 

  96. Axinte D, Dong X, Palmer D, Rushworth A, Guzman SC, Olarra A, Arizaga I, Gomez-Acedo E, Txoperena K, Pfeiffer K, Messmer F, Gruhler M, Kell J (2018) MiRoR—Miniaturized robotic systems for holistic in-situ repair and maintenance works in restrained and hazardous environments. IEEE ASME Trans Mechatron 23:978–981. https://doi.org/10.1109/TMECH.2018.2800285

    Article  Google Scholar 

  97. Olarra A, Axinte D, Kortaberria G (2018) Geometrical calibration and uncertainty estimation methodology for a novel self-propelled miniature robotic machine tool. Robot Comput Integr Manuf 49:204–214. https://doi.org/10.1016/j.rcim.2017.06.011

    Article  Google Scholar 

  98. Rushworth A, Axinte D, Raffles M, Cobos-Guzman S (2016) A concept for actuating and controlling a leg of a novel walking parallel kinematic machine tool. Mechatronics (Oxf) 40:63–77. https://doi.org/10.1016/j.mechatronics.2016.10.010

    Article  Google Scholar 

  99. Chen Z, Gao F (2019) Time-optimal trajectory planning method for six-legged robots under actuator constraints, Proc Inst Mech Eng C J Mech. Eng Sci 233:4990–5002. https://doi.org/10.1177/0954406219833077

    Article  Google Scholar 

  100. Russo M, Dong X (2020) A calibration procedure for reconfigurable Gough-Stewart manipulators. Mech Mach Theory 152:103920. https://doi.org/10.1016/j.mechmachtheory.2020.103920

    Article  Google Scholar 

  101. Liu J, Tian Y, Gao F (2020) A novel six-legged walking machine tool for in-situ operations, Front. Mech Eng 15:351–364. https://doi.org/10.1007/s11465-020-0594-2

    Article  Google Scholar 

  102. Olarra A, Allen JM, Axinte DA (2014) Experimental evaluation of a special purpose miniature machine tool with parallel kinematics architecture: free leg hexapod. Precis Eng 38:589–604. https://doi.org/10.1016/j.precisioneng.2014.02.009

    Article  Google Scholar 

  103. Ma N, Dong X, Palmer D, Arreguin JC, Liao Z, Wang M, Axinte D (2019) Parametric vibration analysis and validation for a novel portable hexapod machine tool attached to surfaces with unequal stiffness. J Manuf Process 47:192–201. https://doi.org/10.1016/j.jmapro.2019.10.003

    Article  Google Scholar 

  104. Chen Z, Liu J, Gao F (2022) Real-time gait planning method for six-legged robots to optimize the performances of terrain adaptability and walking speed. Mech Mach Theory 168:104545. https://doi.org/10.1016/j.mechmachtheory.2021.104545

    Article  Google Scholar 

  105. Verl A, Valente A, Melkote S, Brecher C, Ozturk E, Tunc LT (2019) Robots in machining. CIRP Ann 68:799–822. https://doi.org/10.1016/j.cirp.2019.05.009

    Article  Google Scholar 

  106. Feng Z, Hu G, Sun Y, Soon J (2020) An overview of collaborative robotic manipulation in multi-robot systems. Annu Rev Control 49:113–127. https://doi.org/10.1016/j.arcontrol.2020.02.002

    Article  MathSciNet  Google Scholar 

  107. K Zhou, G Ebenhofer, C Eitzinger, U Zimmermann, C Walter, J Saenz, LP Castaño, MAF Hernández, JN Oriol (2014) Mobile manipulator is coming to aerospace manufacturing industry, in: 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, 94–99.https://doi.org/10.1109/ROSE.2014.6952990

  108. DeVlieg R, Sitton K, Feikert E, Inman J (2002) ONCE (one-sided cell end effector) robotic drilling system, in. SAE Technical Paper

    Book  Google Scholar 

  109. Ferreira LA, Figueira YL, Iglesias IF, Souto MÁ (2017) Offline CAD-based robot programming and welding parametrization of a flexible and adaptive robotic cell using enriched CAD/CAM system for shipbuilding. Procedia Manuf 11:215–223. https://doi.org/10.1016/j.promfg.2017.07.228

    Article  Google Scholar 

  110. Z Chebab, J Fauroux, N Bouton, Y Mezouar, L Sabourin (2015) Autonomous collaborative mobile manipulators: State of the art, in: Symposium on Theory of Machines and Mechanisms/UMTS2015/TrISToMM.

  111. Paoli A, Razionale AV (2012) Large yacht hull measurement by integrating optical scanning with mechanical tracking-based methodologies. Robot Comput Integr Manuf 28:592–601. https://doi.org/10.1016/j.rcim.2012.02.010

    Article  Google Scholar 

  112. Vasiljević G, Miklić D, Draganjac I, Kovačić Z, Lista P (2016) High-accuracy vehicle localization for autonomous warehousing. Robot Comput Integr Manuf 42:1–16. https://doi.org/10.1016/j.rcim.2016.05.001

    Article  Google Scholar 

  113. Susemihl H, Brillinger C, Stürmer SP, Hansen S, Boehlmann C, Kothe S, Wollnack J, Hintze W (2017) Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems. SAE Technical Paper Series. https://doi.org/10.4271/2017-01-2166

    Article  Google Scholar 

  114. Meng J, Wan L, Wang S, Jiang L, Li G, Wu L, Xie Y (2021) Efficient and reliable LiDAR-based global localization of mobile robots using multiscale/resolution maps. IEEE Trans Instrum Meas 70:1–15. https://doi.org/10.1109/TIM.2021.3093933

    Article  Google Scholar 

  115. B Tao, X Zhao, S Yan, H Ding (2020) Kinematic modeling and control of mobile robot for large-scale workpiece machining, Proc Inst Mech Eng B J Eng Manuf, 0954405420933708, https://doi.org/10.1177/0954405420933708.

  116. Yu S, Tao B, Gong Z, Wang J (2019) An efficient pose measurement method for end effector of mobile manipulator based on binocular stereovision, in. IEEE/ASME Int Conf Adv Intell Mechatron (AIM) 2019:181–186. https://doi.org/10.1109/AIM.2019.8868904

    Article  Google Scholar 

  117. Wang W, Tian W, Liao W, Li B (2021) Pose accuracy compensation of mobile industry robot with binocular vision measurement and deep belief network. Optik 238:166716. https://doi.org/10.1016/j.ijleo.2021.166716

    Article  Google Scholar 

  118. Zhou Z, Liu W, Wang Y, Yu B, Cheng X, Yue Y, Zhang J (2022) A combined calibration method of a mobile robotic measurement system for large-sized components. Measurement 189:110543. https://doi.org/10.1016/j.measurement.2021.110543

    Article  Google Scholar 

  119. Susemihl H, Moeller C, Kothe S, Schmidt HC, Shah N, Brillinger C, Wollnack J, Hintze W (2016) High Accuracy Mobile Robotic System for Machining of Large Aircraft Components. SAE Int J Aerosp 9:231–238. https://doi.org/10.4271/2016-01-2139

    Article  Google Scholar 

  120. J Wang, Z Gong, S Yu, B Tao 92021) A pose estimation and optimization method for mobile manipulator’s end-effectors based on stereo vision and ICoP algorithm, in: 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) 744–749.https://doi.org/10.1109/M2VIP49856.2021.9665072

  121. Zhou Z, Li L, Fürsterling A, Durocher HJ, Mouridsen J, Zhang X (2022) Learning-based object detection and localization for a mobile robot manipulator in SME production. Robot Comput Integr Manuf 73:102229. https://doi.org/10.1016/j.rcim.2021.102229

    Article  Google Scholar 

  122. Michalos G, Makris S, Eytan A, Matthaiakis S, Chryssolouris G (2012) Robot path correction using stereo vision system. Procedia CIRP 3:352–357. https://doi.org/10.1016/j.procir.2012.07.061

    Article  Google Scholar 

  123. O Kroeger, F Wollschläger, J Krüger (2020) Low-cost embedded vision for industrial robots: a modular end-of-arm concept, in: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 1301–1304.https://doi.org/10.1109/ETFA46521.2020.9212093

  124. Miseikis J, Knobelreiter P, Brijacak I, Yahyanejad S, Glette K, Elle OJ, Torresen J (2018) Robot localisation and 3D position estimation using a free-moving camera and cascaded convolutional neural networks, in. IEEE/ASME Int Conf Adv Intell Mechatron (AIM) 2018:181–187. https://doi.org/10.1109/AIM.2018.8452236

    Article  Google Scholar 

  125. Liu Y, Zhou J, Li Y, Zhang Y, He Y, Wang J (2022) A high-accuracy pose measurement system for robotic automated assembly in large-scale space. Measurement 188:110426. https://doi.org/10.1016/j.measurement.2021.110426

    Article  Google Scholar 

  126. Gan Y, Dai X (2011) Base frame calibration for coordinated industrial robots. Rob Auton Syst 59:563–570. https://doi.org/10.1016/j.robot.2011.04.003

    Article  Google Scholar 

  127. Wang J, Wang W, Wu C, Chen S, Fu J, Lu G (2019) A plane projection based method for base frame calibration of cooperative manipulators. IEEE Trans Industr Inform 15:1688–1697. https://doi.org/10.1109/TII.2018.2878248

    Article  Google Scholar 

  128. Fan Q, Gong Z, Zhang S, Tao B, Yin Z, Ding H (2021) A vision-based fast base frame calibration method for coordinated mobile manipulators. Robot Comput Integr Manuf 68:102078. https://doi.org/10.1016/j.rcim.2020.102078

    Article  Google Scholar 

  129. G Qiao (2019) Advanced sensor and target development to support robot accuracy degradation assessment, in: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 54–59.https://doi.org/10.1109/COASE.2019.8843200

  130. T Gray, D Orf, G Adams (2013) Mobile automated robotic drilling, inspection, and fastening, SAE Tech. Pap 01–2338.

  131. S Mikhel, D Popov, S Mamedov, A Klimchik 2018 Advancement of robots with double encoders for industrial and collaborative applications, in: 2018 23rd Conference of Open Innovations Association (FRUCT), 246–252.https://doi.org/10.23919/FRUCT.2018.8588021

  132. Mesmer P, Neubauer M, Lechler A, Verl A (2022) Robust design of independent joint control of industrial robots with secondary encoders. Robot Comput Integr Manuf 73:102232. https://doi.org/10.1016/j.rcim.2021.102232

    Article  Google Scholar 

  133. Klimchik A, Pashkevich A (2018) Robotic manipulators with double encoders: accuracy improvement based on advanced stiffness modeling and intelligent control. IFAC-PapersOnLine 51:740–745. https://doi.org/10.1016/j.ifacol.2018.08.407

    Article  Google Scholar 

  134. Zhao C, Wen K, Yue Y, Zhou Y, Yang J (2018) Research on numerical control system of the mobile robotic equipment for unstructured machining, in. WRC Symp Adv Robotics Autom (WRC SARA) 2018:208–212. https://doi.org/10.1109/WRC-SARA.2018.8584230

    Article  Google Scholar 

  135. Y Yi, Z Liyan, Z Zilan, G Yongliang (2019) Research on numerical control of the mobile robotic machine tool, in: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) 76–80.https://doi.org/10.1109/CYBER46603.2019.9066658

  136. Möller C, Schmidt HC, Koch P, Böhlmann C, Kothe S-M, Wollnack J, Hintze W (2017) Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry. Procedia Manuf 14:17–29. https://doi.org/10.1016/j.promfg.2017.11.003

    Article  Google Scholar 

  137. Devlieg R (2011) High-accuracy robotic drilling/milling of 737 inboard flaps. SAE Int J Aerosp 4:1373–1379. https://doi.org/10.4271/2011-01-2733

    Article  Google Scholar 

  138. Guo Y, Dong H, Wang G, Ke Y (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110. https://doi.org/10.1016/j.ijmachtools.2015.11.011

    Article  Google Scholar 

  139. Guo Y, Dong H, Ke Y (2015) Stiffness-oriented posture optimization in robotic machining applications. Robot Comput Integr Manuf 35:69–76. https://doi.org/10.1016/j.rcim.2015.02.006

    Article  Google Scholar 

  140. Zhang L, Dhupia JS, Wu M, Huang H (2018) A robotic drilling end-effector and its sliding mode control for the normal adjustment. Appl Sci 8:1892. https://doi.org/10.3390/app8101892

    Article  Google Scholar 

  141. Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Comput Integr Manuf 57:391–403. https://doi.org/10.1016/j.rcim.2018.12.019

    Article  Google Scholar 

  142. Frommknecht A, Kuehnle J, Effenberger I, Pidan S (2017) Multi-sensor measurement system for robotic drilling. Robot Comput Integr Manuf 47:4–10. https://doi.org/10.1016/j.rcim.2017.01.002

    Article  Google Scholar 

  143. Liang J, Bi S (2010) Design and experimental study of an end effector for robotic drilling. Int J Adv Manuf Technol 50:399–407. https://doi.org/10.1007/s00170-009-2494-9

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2018YFB1306803).

Author information

Authors and Affiliations

Authors

Contributions

LY and MZF conceived and designed the study. MZF wrote the paper. LY, MZF, and XY reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Lu Yong or Xue Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, L., Zhifu, M. & Yuan, X. Towards advanced manufacturing systems for large parts: a review. Int J Adv Manuf Technol 125, 3003–3022 (2023). https://doi.org/10.1007/s00170-023-10939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10939-8

Keywords

Navigation