Skip to main content
Log in

Effects of fused filament fabrication process parameters on tensile properties of polyether ketone ketone (PEKK)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fused filament fabrication (FFF) is an additive manufacturing (AM) technology which is rapidly progressing from production of prototypes to manufacture of customized end use parts for the automotive, biomedical, and aerospace industries. The properties of manufactured parts have been proven to be dependent on not only the material’s inherent properties but importantly the FFF process parameters. Commodity thermoplastics such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) have been on the forefront of FFF research since its development. However, as FFF technology progresses from rapid prototyping to rapid manufacturing, understanding the behaviour of high-performance engineering thermoplastics in this process is imperative.

While previous studies have investigated the effects of FFF process parameters on polyether ether ketone (PEEK) and polyetherimide (PEI), more limited research has been performed on polyether ketone ketone (PEKK) despite its widespread applications in the biomedical and aerospace industries. This study investigated the effects of process parameters including build orientation, infill pattern, number of contours and raster angle on the tensile properties of PEKK. Tensile test results showed significant variations in Young’s modulus and elongation at break. Statistical analysis was performed which determined the optimum process parameters to maximize tensile properties and revealed that build orientation was the most significant parameter, followed by number of contours. Fractography showed differences in failure mode and ductility among the sample groups. Analysis using differential scanning calorimetry (DSC) showed that the difference in percentage crystallinity among sample groups was not significant and thus the varied tensile properties was improbable to be due to differences in crystallinity developed within the specimens. Further analysis revealed that a variation in FFF process parameters can cause differences in percentage, size and location of porosity which in turn affects mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

All data in this paper can be included as supplementary materials upon request.

Code availability

Not applicable.

References

  1. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. 2015. edn. Imprint: Springer, New York, NY

  2. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp 8(4):248–257

    Article  Google Scholar 

  3. Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L (2020) Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol 31(3):501–507. https://doi.org/10.1002/pat.4787

    Article  Google Scholar 

  4. Onwubolu GC, Rayegani F (2014) Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int J Manuf Eng 2014:598531. https://doi.org/10.1155/2014/598531

    Article  Google Scholar 

  5. Caminero MÁ, Chacón JM, García-Plaza E, Núñez PJ, Reverte JM, Becar JP (2019) Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers 11(5):799. https://doi.org/10.3390/polym11050799

    Article  Google Scholar 

  6. Wach RA, Wolszczak P, Adamus-Wlodarczyk A (2018) Enhancement of mechanical properties of FDM-PLA parts via thermal annealing. Macromol Mater Eng 303(9):1800169. https://doi.org/10.1002/mame.201800169

    Article  Google Scholar 

  7. Rajpurohit SR, Dave HK (2018) Tensile properties of 3D printed PLA under unidirectional and bidirectional raster angle: a comparative study. Int J Mater Metall Eng 12(1):6–11

    Google Scholar 

  8. Vicente C, Fernandes J, Deus A, Vaz M, Leite M, Reis L (2019) Effect of protective coatings on the water absorption and mechanical properties of 3D printed PLA. Frat Integrità Strutt 13(48):748–756

    Article  Google Scholar 

  9. Liu X, Zhang M, Li S, Si L, Peng J, Hu Y (2017) Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol 89(5):2387–2397

    Article  Google Scholar 

  10. Santhakumar J, Maggirwar R, Gollapudi S, Karthekeyan S, Kalra N (2016) Enhancing impact strength of fused deposition modeling built parts using polycarbonate material. Indian J Sci Technol 9(34):1–6. https://doi.org/10.17485/ijst/2016/v9i34/100983

    Article  Google Scholar 

  11. Salazar-Martin AG, Perez MA, Garcia-Granada A-A, Reyes G, Puigoriol-Forcada JM (2018) A study of creep in polycarbonate fused deposition modelling parts. Mater Des 141:414–425. https://doi.org/10.1016/j.matdes.2018.01.008

    Article  Google Scholar 

  12. Cicala G, Ognibene G, Portuesi S, Blanco I, Rapisarda M, Pergolizzi E, Recca G (2018) Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials (Basel) 11(2). https://doi.org/10.3390/ma11020285

  13. Cheng K-j, Liu Y-f, Wang R, Zhang J-x, Jiang X-f, Dong X-t, Xu X (2020) Topological optimization of 3D printed bone analog with PEKK for surgical mandibular reconstruction. J Mech Behav Biomed Mater 107:103758. https://doi.org/10.1016/j.jmbbm.2020.103758

    Article  Google Scholar 

  14. Wang Y, Müller W-D, Rumjahn A, Schwitalla A (2020) Parameters influencing the outcome of additive manufacturing of tiny medical devices based on PEEK. Materials 13(2):466–460. https://doi.org/10.3390/ma13020466

    Article  Google Scholar 

  15. Bessaguet C, Dantras E, Michon G, Chevalier M, Laffont L, Lacabanne C (2019) Electrical behavior of a graphene/PEKK and carbon black/PEKK nanocomposites in the vicinity of the percolation threshold. J Non-Cryst Solids 512:1–6. https://doi.org/10.1016/j.jnoncrysol.2019.02.017

    Article  Google Scholar 

  16. Rinaldi M, Ghidini T, Cecchini F, Brandao A, Nanni F (2018) Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos B 145:162–172. https://doi.org/10.1016/j.compositesb.2018.03.029

    Article  Google Scholar 

  17. Zaldivar RJ, Witkin DB, McLouth T, Patel DN, Schmitt K, Nokes JP (2017) Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Addit Manuf 13:71–80. https://doi.org/10.1016/j.addma.2016.11.007

    Article  Google Scholar 

  18. Zhang Y, Chou K (2008) A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc Inst Mech Eng Part B J Eng Manuf 222(8):959–968. https://doi.org/10.1243/09544054JEM990

    Article  Google Scholar 

  19. Casavola C, Cazzato A, Moramarco V, Pappalettera G (2017) Residual stress measurement in fused deposition modelling parts. Polym Testing 58:249–255. https://doi.org/10.1016/j.polymertesting.2017.01.003

    Article  Google Scholar 

  20. Panda SK, Padhee S, Sood AK, Mahapatra SS (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 01(02):89–97. https://doi.org/10.4236/iim.2009.12014

    Article  Google Scholar 

  21. Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  22. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295. https://doi.org/10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  23. Gebisa AW, Lemu HG (2019) Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085. Procedia Manuf 30:331–338. https://doi.org/10.1016/j.promfg.2019.02.047

    Article  Google Scholar 

  24. Pandelidi C, Maconachie T, Bateman S, Kelbassa I, Piegert S, Leary M, Brandt M (2021) Parametric study on tensile and flexural properties of ULTEM 1010 specimens fabricated via FDM. Rapid Prototyp J 27(2):429–451. https://doi.org/10.1108/RPJ-10-2019-0274

    Article  Google Scholar 

  25. Srinivasan R, Nirmal Kumar K, Jenish Ibrahim A, Anandu KV, Gurudhevan R (2020) Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Mater Today Proc 27:1801–1805. https://doi.org/10.1016/j.matpr.2020.03.777

    Article  Google Scholar 

  26. Ding S, Zou B, Wang P, Ding H (2019) Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Testing. https://doi.org/10.1016/j.polymertesting.2019.105948

    Article  Google Scholar 

  27. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  28. Matlack M, Castle J, Taylor G, Wang X, Mason L, Leu M-C, Chandrashekhara K (2016) Investigation of Ultem 1010 FDM sparse-build parts using design of experiments and numerical simulation. Compos Adv Mater Expo (CAMX), Anaheim, CA

  29. Taylor G, Anandan S, Murphy D, Leu M, Chandrashekhara K (2019) Fracture toughness of additively manufactured ULTEM 1010. Virtual Phys Prototyp 14(3):277–283. https://doi.org/10.1080/17452759.2018.1558494

    Article  Google Scholar 

  30. Taylor G, Wang X, Mason L, Leu M-C, Chandrashekhara K (2017) Optimization of Ultem 1010 fused deposition modeling specimens for flexural behavior. Compos Adv Mater Expo (CAMX), Orlando, FL

  31. Taylor G, Wang X, Mason L, Leu MC, Chandrashekhara K, Schniepp T, Jones R (2018) Flexural behavior of additively manufactured Ultem 1010: experiment and simulation. Rapid Prototyp J 24(6):1003–1011. https://doi.org/10.1108/RPJ-02-2018-0037

    Article  Google Scholar 

  32. Sviridov A, Lopatina I, Kurganova I (2019) 3D-printed polyether ether ketone samples mechanical properties estimation. IOP Conf Ser (Modern Eng) 589:012021–012020. https://doi.org/10.1088/1757-899x/589/1/012021

    Article  Google Scholar 

  33. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials (Basel) 8(9):5834–5846. https://doi.org/10.3390/ma8095271

    Article  Google Scholar 

  34. Auletti CR, Martino AJ, Sheinman OR (2016) Mission of firsts. Natl Aeronaut Space Admin Cut Edge 12. NASA, USA

  35. Antero 800NA (2019) Stratasys. https://www.stratasys.com/materials/search/antero-800na. Accessed 5 Jun 2021

  36. Reber Iii R, Koo B, Liu D (2019) Polyetherketoneketone (PEKK), a versatile ultra-polymer for additive manufacturing. Paper presented at the SAMPE 2019 - Charlotte, NC

  37. Choupin T, Fayolle B, Régnier G, Paris C, Cinquin J, Brulé B (2017) Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer. Polymer 111:73

    Article  Google Scholar 

  38. Choupin T, Fayolle B, Régnier G, Paris C, Cinquin J, Brulé B (2018) A more reliable DSC-based methodology to study crystallization kinetics: application to poly(ether ketone ketone) (PEKK) copolymers. Polymer 155:109–115. https://doi.org/10.1016/j.polymer.2018.08.060

    Article  Google Scholar 

  39. Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169(1):54–61

    Article  Google Scholar 

  40. Giri J, Shahane P, Jachak S, Chadge R, Giri P (2021) Optimization of FDM process parameters for dual extruder 3d printer using artificial neural network. Mater Today Proc 43(Part_5):3242–3249. https://doi.org/10.1016/j.matpr.2021.01.899

    Article  Google Scholar 

  41. Gunasekaran HB, Ponnan S, Thirunavukkarasu N, Wu K, Wu L, Wang J (2021) Investigation of in-situ chemical cross-linking during fused filament fabrication process on parts shrinkage reduction and interlayer adhesion. J Mater Res Technol 15:2026–2035. https://doi.org/10.1016/j.jmrt.2021.09.046

    Article  Google Scholar 

  42. Candal M, Calafel I, Aranburu N, Fernández M, Gerrica-Echevarria G, Santamaría A, Müller A (2020) Thermo-rheological effects on successful 3D printing of biodegradable polyesters. Addit Manuf 36:101408. https://doi.org/10.1016/j.addma.2020.101408

    Article  Google Scholar 

  43. Lee C-Y, Liu C-Y (2019) The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit Manuf 25:196–203. https://doi.org/10.1016/j.addma.2018.11.012

    Article  Google Scholar 

  44. Aloyaydi B, Sivasankaran S, Mustafa A (2020) Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym Testing 87:106557. https://doi.org/10.1016/j.polymertesting.2020.106557

    Article  Google Scholar 

  45. US Air Force Optimizes CubeSat using Architected Materials. nTopology. https://ntopology.com/case-studies/air-force-optimizes-cubesat-using-architected-materials/. Accessed 11 Oct 2021

  46. Lubombo C, Huneault MA (2018) Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Mater Today Commun 17:214–228. https://doi.org/10.1016/j.mtcomm.2018.09.017

    Article  Google Scholar 

  47. Mostafa KG, Montemagno C, Qureshi AJ (2018) Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts. Procedia Manuf 26:753–762. https://doi.org/10.1016/j.promfg.2018.07.086

    Article  Google Scholar 

  48. Mohamed OA, Masood SH, Bhowmik JL (2016) Experimental investigation of the influence of fabrication conditions on dynamic viscoelastic properties of PC-ABS processed parts by FDM process. IOP Conf Ser Mater Sci Eng 149(1):12122. https://doi.org/10.1088/1757-899X/149/1/012122

    Article  Google Scholar 

  49. Zhang X, Chen L, Mulholland T, Osswald TA (2019) Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym Adv Technol 30(8):2122–2135. https://doi.org/10.1002/pat.4645

    Article  Google Scholar 

  50. Huang B, Singamneni S (2015) Raster angle mechanics in fused deposition modelling. J Compos Mater 49(3):363–383. https://doi.org/10.1177/0021998313519153

    Article  Google Scholar 

  51. Udayakumar M, Kollár M, Kristály F, Leskó M, Szabó T, Marossy K, Tasnádi I, Németh Z (2020) Temperature and time dependence of the solvent-induced crystallization of poly( l -lactide). Polymers 12(5):1065. https://doi.org/10.3390/polym12051065

    Article  Google Scholar 

  52. Quiroga Cortés L, Caussé N, Dantras E, Lonjon A, Lacabanne C (2016) Morphology and dynamical mechanical properties of poly ether ketone ketone (PEKK) with meta phenyl links. J Appl Polym Sci 133(19). https://doi.org/10.1002/app.43396

    Article  Google Scholar 

  53. Alaimo G, Marconi S, Costato L, Auricchio F (2017) Influence of meso-structure and chemical composition on FDM 3D-printed parts. Compos B 113:371–380. https://doi.org/10.1016/j.compositesb.2017.01.019

    Article  Google Scholar 

  54. Baca Lopez DM, Ahmad R (2020) Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling. Polymers 12(3). https://doi.org/10.3390/polym12030651

    Article  Google Scholar 

  55. Huang B, Singamneni S (2014) Raster angle mechanics in fused deposition modelling. J Compos Mater 49(3):363–383. https://doi.org/10.1177/0021998313519153

    Article  Google Scholar 

  56. Kiendl J, Gao C (2020) Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Compos B Eng 180:107562. https://doi.org/10.1016/j.compositesb.2019.107562

    Article  Google Scholar 

  57. Luchinsky DG, Hafiychuk H, Hafiychuk V, Wheeler KR (2018) Molecular dynamics of ULTEM 9085 for 3D manufacturing: spectra, thermodynamic properties, and shear viscosity. NASA. https://ntrs.nasa.gov/api/citations/20190026629/downloads/20190026629.pdf. Accessed 1 Feb 2022

  58. Vaes D, Coppens M, Goderis B, Zoetelief W, Van Puyvelde P (2021) The extent of interlayer bond strength during fused filament fabrication of nylon copolymers: an interplay between thermal history and crystalline morphology. Polymers 13(16):2677

    Article  Google Scholar 

  59. Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518. https://doi.org/10.1016/j.commatsci.2013.06.041

    Article  Google Scholar 

  60. Gopi Mohan R, Santhosh K, Iyer RV, John LK, Ramu M (2021) Comparitive analysis of mechanical properties of FDM printed parts based on raster angles. Mater Today Proc 47(Part_14):4730–4734. https://doi.org/10.1016/j.matpr.2021.05.649

    Article  Google Scholar 

  61. Rashed K, Kafi A, Simons R, Bateman S (2022) Fused filament fabrication of nylon 6/66 copolymer: parametric study comparing full factorial and Taguchi design of experiments. Rapid Prototyp J 28(6):1111–1128. https://doi.org/10.1108/RPJ-06-2021-0139

    Article  Google Scholar 

  62. Yang C, Tian X, Li D, Cao Y, Zhao F, Shi C (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol 248:1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027

    Article  Google Scholar 

  63. Wang R, Cheng K-j, Advincula RC, Chen Q (2019) On the thermal processing and mechanical properties of 3D-printed polyether ether ketone. MRS Communications 9(3):1046–1052. https://doi.org/10.1557/mrc.2019.86

    Article  Google Scholar 

  64. Zanjanijam AR, Major I, Lyons JG, Lafont U, Devine DM (2020) Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers 12(8). https://doi.org/10.3390/polym12081665

    Article  Google Scholar 

  65. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20(3):228–235. https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  66. Kennedy MA, Peacock AJ, Mandelkern L (1994) Tensile properties of crystalline polymers: linear polyethylene. Macromolecules 27(19):5297–5310. https://doi.org/10.1021/ma00097a009

    Article  Google Scholar 

  67. Li Y, Lou Y (2020) Tensile and bending strength improvements in PEEK parts using fused deposition modelling 3D printing considering multi-factor coupling. Polymers 12(11). https://doi.org/10.3390/polym12112497

    Article  Google Scholar 

  68. Charlon S, Soulestin J (2020) Thermal and geometry impacts on the structure and mechanical properties of part produced by polymer additive manufacturing. J Appl Polym Sci 137(35):49038. https://doi.org/10.1002/app.49038

    Article  Google Scholar 

  69. Gurrala PK, Regalla SP (2014) Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part. Virtual Phys Prototyp 9(3):141–149. https://doi.org/10.1080/17452759.2014.913400

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities and technical assistance of Advanced Manufacturing Precinct, Process Chemistry and Environmental Technical Services, and Australian Microscopy and Microanalysis Facility, all of which are part of RMIT University Melbourne City Campus.

Funding

This research was funded by Australian Government Research Training Program Scholarship and the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. 3D printing was performed by Kaifur Rashed and Abdullah Kafi. Data collection, analysis and preparation of first draft were performed by Kaifur Rashed. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kaifur Rashed.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashed, K., Kafi, A., Simons, R. et al. Effects of fused filament fabrication process parameters on tensile properties of polyether ketone ketone (PEKK). Int J Adv Manuf Technol 122, 3607–3621 (2022). https://doi.org/10.1007/s00170-022-10134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10134-1

Keywords

Navigation