Skip to main content
Log in

Anti-friction and wear resistance analysis of cemented carbide coatings

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining cemented carbide coating on workpiece surface can effectively improve wear resistance of friction pair and reduce frictional coefficient and frictional wear. Through the research and development status of cemented carbide coating, the design of cemented carbide coating, processing method, wear mechanism, and bonding technology between cemented carbide coating and micro-/nano-texture are comprehensively described. Hardness, toughness, thickness, grain size, microstructure composition, etc. are important parameters affecting the wear resistance of cemented carbide coatings. The processing technology of cemented carbide coating has its advantages according to the working conditions of the workpiece. Among them, laser melting and plasma melting have good prospects for development. According to the working conditions of the workpiece, the wear mechanism of the hard alloy coating is different. The wear forms mainly include abrasive wear, adhesive wear, contact fatigue wear, and oxidation corrosion wear. The combination of cemented carbide coating and micro-/nano-texture technology can further improve the wear resistance of cemented carbide coating, which has good development prospects. Finally, the research prospect of wear resistance of cemented carbide coatings is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Availability of data and material

Transparent.

Code availability

Not applicable.

References

  1. Yang ZW (2019) Preparation and wear mechanism of anti-wear thick coating on Cu-based self-lubricating surface. Dissertation, TaiYuan University of Tecnnology

  2. DašićP FF, Assenova E, Radovanović M (2003) International standardization and organizations in the field of tribology. Ind Lubr Tribol 55:287–291. https://doi.org/10.1108/00368790310496437

    Article  Google Scholar 

  3. Liu XM, Liang ZT, Wang HB, Zhao Z, Liu C, Lu Hao L, Song XY (2022) Wear resistance of ultra-coarse WC-WCoB-Co cemented carbide at different oxidation stages. Int J Refract Metal Hard Mater 105:105827. https://doi.org/10.1016/J.IJRMHM.2022.105827

    Article  Google Scholar 

  4. Xiao JK, Wu YQ, Chen J, Zhang C (2020) Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 448–449:203209. https://doi.org/10.1016/j.wear.2020.203209

    Article  Google Scholar 

  5. Pagounis E, Lindroos VK (1997) Development and performance of new hard and wear-resistant engineering materials. J Mater Eng Perform 6:749–756. https://doi.org/10.1007/s11665-997-0077-1

    Article  Google Scholar 

  6. Holmberg K, Kivikytö-Reponen P, Härkisaari P, Erdemir A (2017) Global energy consumption due to friction and wear in the mining industry. Tribol Int 115:116–139. https://doi.org/10.1016/j.triboint.2017.05.010

    Article  Google Scholar 

  7. Wen SZ, Huang P, Tian Y, Ma LR (2018) Principles of tribology. Tising Hua University Press, Beijing

    Google Scholar 

  8. Kong WD, Zhang DK, Tao Q, Chen K, Wang J, Wang SJ (2019) Wear properties of the deep gradient wear-resistant layer applied to 20CrMnTi gear steel. Wear 424–425:216–222. https://doi.org/10.1016/j.wear.2019.02.026

    Article  Google Scholar 

  9. Sun XL, Zhang JK, Pan WG, Wang WH, Tang CW (2022) Research progress in surface strengthening technology of carbide-based coating. J Alloy Compd 905:164062. https://doi.org/10.1016/J.JALLCOM.2022.164062

    Article  Google Scholar 

  10. Zhang MN, Wang DF, He LJ, Ye XY, Wentai O, Xu ZF, Zhou XL, Zhang WW, Zhou XL (2022) Microstructure and elevated temperature wear behavior of laser-cladded AlCrFeMnNi high-entropy alloy coating. Opt Laser Technol 149:107845. https://doi.org/10.1016/J.OPTLASTEC.2022.107845

    Article  Google Scholar 

  11. Heinrichs J, Norgren S, Jacobson S, Yvell K, Olsson M (2021) Influence of binder metal on wear initiation of cemented carbides in sliding contact with granite. Wear 407–471:203645. https://doi.org/10.1016/J.WEAR.2021.203645

    Article  Google Scholar 

  12. Antonov M, Yung D-L, Goljandin D, Mikli V, Hussainova L (2017) Effect of erodent particle impact energy on wear of cemented carbides. Wear 376–377:507–515. https://doi.org/10.1016/j.wear.2016.11.032

    Article  Google Scholar 

  13. García J, Ciprés VC, Blomqvist A, Kaplan K (2018) Cemented carbide microstructures: a review. Int J Refract Metal Hard Mater 80:40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  Google Scholar 

  14. Zhou L, Zhang JW, Li SQ, Tian Y, Wang JP, Huang MY, Yuan Q, Li X, Kou ZL, Zhan GD, He DW (2021) Effects of hardness and grain size on wear resistance of polycrystalline cubic boron nitride. Int J Refract Metal Hard Mater 105766. https://doi.org/10.1016/J.IJRMHM.2021.105766

    Article  Google Scholar 

  15. Habib KA, Cano DL, Antonio HJ, Serrano MJ (2021) Analysis of the hardness ratio effect on the tribological performance of NiCrBSi coating/debris particles using the Stribeck Curve. Wear 489–487:204081. https://doi.org/10.1016/J.WEAR.2021.204081

    Article  Google Scholar 

  16. Wang JL, Li J, Ma L (2016) Effect of silicon, titanium and vanadium on microstructure and properties of wear-resisting layer of double metal wear-resisting tube by centrifugal coating. Hot Work Technol 45:101–104. https://doi.org/10.14158/j.cnki.1001-3814.2016.13.028

    Article  Google Scholar 

  17. Hussainova I, Antonov M, Zikin A (2011) Erosive wear of advanced composites based on WC. Tribol Int 46:254–260. https://doi.org/10.1016/j.triboint.2011.06.004

    Article  Google Scholar 

  18. Priyabrata S, Karali P (2021) Cumulative reduction of friction and size effects in micro milling through proper selection of coating thickness of TiAlN coated tool: experimental and analytical assessments. J Manuf Process 67:635–654. https://doi.org/10.1016/J.JMAPRO.2021.05.037

    Article  Google Scholar 

  19. Vereschaka A, Tabakov V, Grigoriev S, Aksenenko A, Sitnikov N, Oganyan G, Seleznev A, Shevchenko S (2018) Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr, Al, Si)N coatings. Surf Coat Technol 357:218–234. https://doi.org/10.1016/j.surfcoat.2018.09.087

    Article  Google Scholar 

  20. Vereschaka A, Volosova M, Chigarev A, Sitnikov N, Ashmarin A, Sotova C, Bublikov J, Lytkin D (2020) Influence of the thickness of a nanolayer composite coating on values of residual stress and the nature of coating wear. Coatings 10:63. https://doi.org/10.3390/coatings10010063

    Article  Google Scholar 

  21. Alexey V, Marina V, Nikolay S, Filipp M, Nikolay A, Jury B, Catherine S (2021) Influence of the thickness of nanolayers in wear-resistant layer of Ti-TiN-(Ti, Cr, Al)N coating on the tool life and wear pattern of the carbide cutting tools in steel turning. Procedia CIRP 101:262–265. https://doi.org/10.1016/J.PROCIR.2021.02.027

    Article  Google Scholar 

  22. Oliver CJRG, Álvarez EA, García GL (2016) Kinetics of densification and grain growth in ultrafine WC-Co composites. Int J Refract Metal Hard Mater 59:121–131. https://doi.org/10.1016/j.ijrmhm.2016.05.016

    Article  Google Scholar 

  23. Syam HM, Amir K, Pradeep KR, Michael N (2021) Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms. Tribol Int 161:107065. https://doi.org/10.1016/J.TRIBOINT.2021.107065

    Article  Google Scholar 

  24. Hussainova I (2005) Microstructure and erosive wear in ceramic-based composites. Wear 258:357–365. https://doi.org/10.1016/j.wear.2004.01.024

    Article  Google Scholar 

  25. Zhang H, Xiong J, Guo ZX, Yang TE, Yi JS, Yang SD, Liang L (2022) Effect of WC particle size on high temperature wear resistance of WC-Co cemented carbide. Hot Work Technol 51:21–24. https://doi.org/10.14158/j.cnki.1001-3814.20210590

    Article  Google Scholar 

  26. Andren H-O (2000) Microstructures of cemented carbides. Mater Des 22:491–498. https://doi.org/10.1016/S0261-3069(01)00006-1

    Article  Google Scholar 

  27. Sudhish R, Udaya Bhat K (2022) Microstructure evolution in Al 6061 coating deposited on Al 2024 substrate by friction surfacing. Mater Today Communi 31:130354. https://doi.org/10.1016/J.MTCOMM.2022.103354

    Article  Google Scholar 

  28. Zhou YD (2020) Research on microstructure and properties of X-M6V wear-resistant coating by extreme-high speed laser cladding on the surface 45# steel. Dissertation, Harbin Institute of Technology

  29. Sun W, Song QR, Liu K, Liu XJ, Ye JX (2022) The limit of adhesive debris retention: a case study using ultra-low wear Alumina–PTFE. Wear 496–497:204274. https://doi.org/10.1016/J.WEAR.2022.204274

    Article  Google Scholar 

  30. Li J, Qiu H, Zhang XF, Yu HL, Yang JJ, Tu XH, Li W (2022) Effects of (Ti, Mo) C particles on the abrasive wear -corrosion of low alloy martensitic steel 496–497: 204288. Wear. https://doi.org/10.1016/J.WEAR.2022.204288

    Article  Google Scholar 

  31. Gao Y, Luo BH, He KJ, Zhang WW, Bai ZH (2018) Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides. Ceram Int 44:2030–2041. https://doi.org/10.1016/j.ceramint.2017.10.148

    Article  Google Scholar 

  32. Yu T, Deng QL, Dong G, Yang JG, Zhang W (2011) Influence of Ta on crack susceptibility and mechanical properties of laser clad Ni-based coating. J Mech Eng 47:225–230. https://doi.org/10.3901/JME.2011.22.025

    Article  Google Scholar 

  33. Balaguru S, Gupta M (2020) Hardfacing studies of Ni alloys: a critical review. J Market Res 10:1210–1242. https://doi.org/10.1016/J.JMRT.2020.12.026

    Article  Google Scholar 

  34. Singh S, Kumar R, Goel P, Singh H (2022) Analysis of wear and hardness during surface hardfacing of alloy steel by thermal spraying, electric arc and TIG welding. Mater Today Proc 50:1599–1605. https://doi.org/10.1016/J.MATPR.2021.09.122

    Article  Google Scholar 

  35. Tai P, Huang JH, Mao WY, Zhou YZ (2015) Microstructure and properties of surfacing wear-resistant layer for valve core. Hot Work Technol 44:191–192. https://doi.org/10.14158/j.cnki.1001-3814.2015.09.058

    Article  Google Scholar 

  36. Lemke JN, Rovatti L, Colombo M, Vedani M (2016) Interrelation between macroscopic, microscopic and chemical dilution in hardfacing alloys. Mater Des 91:368–377. https://doi.org/10.1016/j.matdes.2015.11.117

    Article  Google Scholar 

  37. Prysyazhnyuk P, Ivanov O, Matvienkiv O, Marynenko S, Korol O, Koval I (2022) Impact and abrasion wear resistance of the hardfacings based on high-manganese steel reinforced with multicomponent carbides of Ti-Nb-Mo-V-C system. Procedia Struct Integr 36:130–136. https://doi.org/10.1016/J.PROSTR.2022.01.014

    Article  Google Scholar 

  38. Ivanov O, Prysyazhnyuk P, Shlapak L, Marynenko S, Bodrova L, Kramar H (2022) Researching of the structure and properties of FCAW hardfacing based on Fe-Ti-Mo-B-C welded under low current. Procedia Struct Integr 36:223–230. https://doi.org/10.1016/J.PROSTR.2022.01.028

    Article  Google Scholar 

  39. Dilawary SAA, Motallebzadeh A, Houdková S, Medlin R, Haviar S, Lukac F, Afzal M, Cimenoglu H (2018) Modification of M2 hardfacing: effect of molybdenum alloying and laser surface melting on microstructure and wear performance. Wear 404–405:111–121. https://doi.org/10.1016/j.wear.2018.03.013

    Article  Google Scholar 

  40. Malamousi K, Delibasis K, Allcock B, Kamnis S (2022) Digital transformation of thermal and cold spray processes with emphasis on machine learning. Surf Coat Technol 433:128138. https://doi.org/10.1016/J.SURFCOAT.2022.128138

    Article  Google Scholar 

  41. Yedida SVV, Vasudev H (2022) A review on the development of thermal barrier coatings by using thermal spray techniques. Mater Today Proc 50:1458–1464. https://doi.org/10.1016/J.MATPR.2021.09.018

    Article  Google Scholar 

  42. Amanov A, Berkebile S (2022) Effects of surface modification on fuel-lubricated tribological behavior of WC-Co thermal spray coating. Mater Lett 317:132096. https://doi.org/10.1016/J.MATLET.2022.132096

    Article  Google Scholar 

  43. Tejero-Martin D, Romero AR, Wellman RG, Hussain T (2022) Interaction of CMAS on thermal sprayed ytterbium disilicate environmental barrier coatings: a story of porosity. Ceram Int 48:8286–8296. https://doi.org/10.1016/J.CERAMINT.2021.12.033

    Article  Google Scholar 

  44. Sadeghi E, Markocsan N, Joshi S (2019) Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: Effect of composition and microstructure. Springer US, PP 8

  45. Bobzin K, Wietheger W, Jacobs G, Bosse D, Schroder T, Rolink A (2020) Thermally sprayed coatings for highly stressed sliding bearings. Wear 458–459:203415. https://doi.org/10.1016/j.wear.2020.203415

    Article  Google Scholar 

  46. Pan YY, Liang B, Niu YR, Tian J, Han DJ, Zhong X, Xie LL, Zheng XB (2022) Thermal shock behaviors of plasma sprayed YSZ/TiAlCrY system on TiAl alloys. Ceram Int 48:6199–6207. https://doi.org/10.1016/J.CERAMINT.2021.11.160

    Article  Google Scholar 

  47. Zhu LD, Xue PS, Lan Q, Meng GR, Ren Y, Yang ZC, Xu PH, Liu Z (2021) Recent research and development status of laser cladding: a review. Opt Laser Technol 138:106915. https://doi.org/10.1016/J.OPTLASTEC.2021.106915

    Article  Google Scholar 

  48. Liu JL, Yu HJ, Chen CZ, Weng F, Dai JJ (2017) Research and development status of laser cladding on magnesium alloys: a review. Opt Lasers Eng 93:195–210. https://doi.org/10.1016/j.optlaseng.2017.02.007

    Article  Google Scholar 

  49. Wang D (2021) Study on laser cladding remanufacturing repair method of gear tooth surface. Dissertation, Dalian University of Technology 空气质量指数

  50. Singh S, Goyal DK, Kumar P, Bansal A (2022) Influence of laser cladding parameters on slurry erosion performance of NiCrSiBC + 50WC claddings. Int J Refract Metal Hard Mater 105:105825. https://doi.org/10.1016/J.IJRMHM.2022.105825

    Article  Google Scholar 

  51. Wirth F, Wegener K (2018) A physical modeling and predictive simulation of the laser cladding process. Addit Manuf 22:307–319. https://doi.org/10.1016/j.addma.2018.05.017

    Article  Google Scholar 

  52. Lei JB, Shi C, Zhou SF, Gu ZJ, Zhang LC (2018) Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surf Coat Technol 334:274–285. https://doi.org/10.1016/j.surfcoat.2017.11.051

    Article  Google Scholar 

  53. Zhu LD, Wang SH, Pan HC, Yuan CT, Chen XS (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J Manuf Process 49:344–354. https://doi.org/10.1016/j.jmapro.2019.12.009

    Article  Google Scholar 

  54. Liu XB, Bi JZ, Meng ZY, Li R, Li Y, Zhang T (2021) Tribological behaviors of high-hardness Co-based amorphous coatings fabricated by laser cladding. Tribol Int 162:107142. https://doi.org/10.1016/J.TRIBOINT.2021.107142

    Article  Google Scholar 

  55. Liu JY (2017) Study on modification of Fe-Cr-C layer by plasma cladding. Dissertation, China University of Mining and Technology

  56. Shi Y, Du XD, Zhuang PC, Wang CJ, Gao WD (2019) Research and development trend of plasma cladding technology. Surf Technol 12:23–33. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.12.003

    Article  Google Scholar 

  57. Wang XT, Sun JF, Meng YQ, Liu HW (2021) Research progress of high entropy alloy coating prepared by plasma cladding technology. Hot Work Technol 24:1–6. https://doi.org/10.14158/j.cnki.1001-3814.20211569

    Article  Google Scholar 

  58. Ye FX, Lou Z, Wang YH, Liu WS (2021) Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam plasma cladded Ni60 coatings. Tribol Int 167:107402. https://doi.org/10.1016/J.TRIBOINT.2021.107402

    Article  Google Scholar 

  59. Chen H, Cui HZ, Jiang D, Song XJ, Zhang LJ, Ma GL, Gao XH, Niu HS, Zhao XF, Li J, Zhang CZ, Wang R, Sun XH (2022) Formation and beneficial effects of the amorphous/nanocrystalline phase in laser remelted (FeCoCrNi)75Nb10B8Si7 high-entropy alloy coatings fabricated by plasma cladding. J Alloy Compd 899:163277. https://doi.org/10.1016/J.JALLCOM.2021.163277

    Article  Google Scholar 

  60. Zhou YX, Zhang J, Xing ZG, Wang HD, Lv ZL (2018) Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron. Surf Coat Technol 361:270–279. https://doi.org/10.1016/j.surfcoat.2018.12.055

    Article  Google Scholar 

  61. Ding H, Dai JW, Dai T, Sun YW, Lu T, Lu M, Jia XJ, Huang DS (2020) Effect of preheating/post-isothermal treatment temperature on microstructures and properties of cladding on U75V rail prepared by plasma cladding method. Surf Coat Technol 399:126122. https://doi.org/10.1016/j.surfcoat.2020.126122

    Article  Google Scholar 

  62. Kumar S, Singh R, Singh TP, Sethi BL (2008) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209:3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032

    Article  Google Scholar 

  63. Kumar SS, Varol T, Canakci A, Kumaran ST, Uthayakumar M (2021) A review on the performance of the materials by surface modification through EDM. Int J Lightweight Mater Manuf 4:127–144. https://doi.org/10.1016/j.ijlmm.2020.08.002

    Article  Google Scholar 

  64. Philip JT, Mathew J, Kuriachen B (2021) Transition from EDM to PMEDM – impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: a review. J Manuf Process 64:1105–1142. https://doi.org/10.1016/J.JMAPRO.2021.01.056

    Article  Google Scholar 

  65. Kumar SV, Kumar MP (2015) Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. J Manuf Process 20:70–78. https://doi.org/10.1016/j.jmapro.2015.07.007

    Article  Google Scholar 

  66. Kumar SS, Uthayakumar M, Kumaran ST, Varol T, Canakci A (2019) Investigating the surface integrity of aluminium-based composites machined by EDM. Def Technol 15:338–343. https://doi.org/10.1016/j.dt.2018.08.011

    Article  Google Scholar 

  67. Shabgard MR, Badamchizadeh MA, Ranjbary G, Amini K (2013) Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J Manuf Syst 32:32–39. https://doi.org/10.1016/j.jmsy.2012.09.002

    Article  Google Scholar 

  68. Shunmugam MS, Philip PK, Gangadhar A (1994) Improvement of wear resistance by EDM with tungsten carbide P/M electrode. Wear 171:1–5. https://doi.org/10.1016/0043-1648(94)90340-9

    Article  Google Scholar 

  69. Wang WF, Han C (2018) Microstructure and wear resistance of Ti6Al4V coating fabricated by electro-spark deposition. Metals 9:23. https://doi.org/10.3390/met9010023

    Article  Google Scholar 

  70. Mukalay TA, Trimble JA, Mpofu K, Muvunzi R (2022) A systematic review of process uncertainty in Ti6Al4V-selective laser melting. CIRP J Manuf Sci Technol 36:185–212. https://doi.org/10.1016/J.CIRPJ.2021.12.005

    Article  Google Scholar 

  71. Abbas M, Khalid A, Smith GM, Munroe P (2022) Investigation into the formation of Ni splats plasma-sprayed on to mild steel and stainless steel substrates. Surf Coat Technol 433:128095. https://doi.org/10.1016/J.SURFCOAT.2022.128095

    Article  Google Scholar 

  72. Demircioglu P (2014) Surface topographical evaluation of coated cutting tools with different coating technologies. Measurement 47:893–902. https://doi.org/10.1016/j.measurement.2013.10.008

    Article  Google Scholar 

  73. Li X, Zhang CH, Zhang S, Wu CL, Liu Y, Zhang JB, Shahzad MB (2019) Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology. Opt Laser Technol 114:209–215. https://doi.org/10.1016/j.optlastec.2019.02.001

    Article  Google Scholar 

  74. Xu SB, Zhu SH (2014) Theories and technologies on surface engineering. Surface cladding technology, 2nd edn. National Defense Industry Press, Beijing, pp 102–158

    Google Scholar 

  75. Xu PH, Zhu LD, Xue PS, Yang ZC, Wang SH, Ning JS, Meng GR, Lan Q, Qin SQ (2022) Microstructure and properties of IN718/WC-12Co composite coating by laser cladding. Ceram Int 48:9218–9228. https://doi.org/10.1016/J.CERAMINT.2021.12.108

    Article  Google Scholar 

  76. Attia H (2009) A generalized fretting wear theory. Tribol Int 42:1380–1388. https://doi.org/10.1016/j.triboint.2009.04.010

    Article  Google Scholar 

  77. Hakami F, Pramanik A, Basak AK, Ridgway N (2019) Elastomers’ wear: comparison of theory with experiment. Tribol Int 135:46–54. https://doi.org/10.1016/j.triboint.2019.02.035

    Article  Google Scholar 

  78. Zuo LS, Shao WD, Zhang XQ, Zuo DW (2022) Investigation on tool wear in friction stir welding of SiCp/Al composites. Wear 498–499:204331. https://doi.org/10.1016/j.wear.2022.204331

    Article  Google Scholar 

  79. Gao QS, Yan H, Qin Y, Zhang PL, Guo JL, Chen ZF, Yu ZS (2019) Laser cladding Ti-Ni/TiN/TiW+TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy. Opt Laser Technol 113:182–191. https://doi.org/10.1016/j.optlastec.2018.12.046

    Article  Google Scholar 

  80. Haftlang F, Zarei-Hanzaki A, Abedi H (2019) The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy. Appl Surf Sci 491:360–373. https://doi.org/10.1016/j.apsusc.2019.06.087

    Article  Google Scholar 

  81. Zhang QY, Wang SQ, Zhou Y, Chen KM, Wang L, Cui XH (2017) Artificial oxide-containing tribo-layers and their effect on wear performance of Ti-6Al-4V alloy. Tribol Int 105:334–344. https://doi.org/10.1016/j.triboint.2016.10.022

    Article  Google Scholar 

  82. Bendikiene R, Ciuplys A, Sertvytis R, Surzhenkov A, Tkachivskyi D, Viljus M, Traksmaa R, Antonov M, Kulu P (2020) Wear behaviour of Cr3C2–Ni cermet reinforced hardfacing. J Market Res 9:7068–7078. https://doi.org/10.1016/j.jmrt.2020.05.042

    Article  Google Scholar 

  83. BonnyK BPD, Vleugels J, Biest OVD, Liu W, Lauwers B (2009) Reciprocating sliding friction and wear behavior of electrical discharge machined zirconia-based composites against WC–Co cemented carbide. Int J Refract Metal Hard Mater 27:449–457. https://doi.org/10.1016/j.ijrmhm.2008.07.004

    Article  Google Scholar 

  84. Zhao Y, Feng K, Yao CW, Nie PL, Huang J, Li ZG (2018) Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants. Surf Coat Technol 359:485–494. https://doi.org/10.1016/j.surfcoat.2018.12.017

    Article  Google Scholar 

  85. Zhang YH, Fu YH, Hua XJ, Quan L, Qu JJ (2020) Wear debris of friction materials for linear standing-wave ultrasonic motors: theory and experiments. Wear 448–449:203216. https://doi.org/10.1016/j.wear.2020.203216

    Article  Google Scholar 

  86. Baydoun S, Arnaud P, Fouvry S (2020) Modelling adhesive wear extension in fretting interfaces: an advection-dispersion-reaction contact oxygenation approach. Tribol Int 151:106490. https://doi.org/10.1016/j.triboint.2020.106490

    Article  Google Scholar 

  87. Baydoun S, Fouvry S (2020) An experimental investigation of adhesive wear extension in fretting interface: application of the contact oxygenation concept. Tribol Int 147:106266. https://doi.org/10.1016/j.triboint.2020.106266

    Article  Google Scholar 

  88. Zhou YF, Ma WD, Geng J, Wang Q, Rao LX, Qian ZY, Xing XL, Yang QX (2020) Exploring long-run reciprocating wear of diamond-like carbon coatings: microstructural, morphological and tribological evolution. Surf Coat Technol 405:126581. https://doi.org/10.1016/j.surfcoat.2020.126581

    Article  Google Scholar 

  89. Bai MW, Xue QJ, Wang X, Wang Y, Liu WM (1995) Wear mechanism of SiC whisker-reinforced 2024 aluminum alloy matrix composites in oscillating sliding wear tests. Wear 185:197–202. https://doi.org/10.1016/0043-1648(95)06617-9

    Article  Google Scholar 

  90. Stott FH, Lin DS, Wood GC (1973) The structure and mechanism of formation of the ‘glaze’ oxide layers produced on nickel-based alloys during wear at high temperatures. Corros Sci 13:449–469. https://doi.org/10.1016/0010-938X(73)90030-9

    Article  Google Scholar 

  91. Stott FH (1998) The role of oxidation in the wear of alloys. Tribol Int 31:61–67. https://doi.org/10.1016/S0301-679X(98)00008-5

    Article  Google Scholar 

  92. Stott FH, Lin DS, Wood GC (1973) “Glazes” produced on nickel-base alloys during high temperature wear. Nat Phys Sci 242:75–77. https://doi.org/10.1038/physci242075a0

    Article  Google Scholar 

  93. Gola AM, Ghadamgahi M, Ooi SW (2017) Microstructure evolution of carbide-free bainitic steels under abrasive wear conditions. Wear 376–377:975–982. https://doi.org/10.1016/j.wear.2016.12.038

    Article  Google Scholar 

  94. Chen XM, Zhou XL, Wu YM, Fu L, Zhao J, Wang LR, Mao ZP, Zhao P, Ma HH (2017) Properties and sliding wear mechanism of WC-10Co4Cr coating prepared by HVOF. Surf Technol 46:119–123. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.03018

    Article  Google Scholar 

  95. Ruan MY, Zhang J, Peng XJ, Zhu XY (2021) Study on wear mechanism of cutting cast iron by nitrogen silicon coating ceramic tool. J Mech Strength 43:101–106. https://doi.org/10.16579/j.issn.1001.9669.2021.01.015

    Article  Google Scholar 

  96. Suh NP (1973) The delamination theory of wear. Wear 25:111–124. https://doi.org/10.1016/0043-1648(73)90125-7

    Article  Google Scholar 

  97. Ludema KC (1996) Mechanism-based modeling of friction and wear. Wear 200:1–7. https://doi.org/10.1016/S0043-1648(96)07312-7

    Article  Google Scholar 

  98. Pinto AL, Araújo JA, Talemi R (2021) Effects of fretting wear process on fatigue crack propagation and life assessment. Tribol Int 156:106787. https://doi.org/10.1016/J.TRIBOINT.2020.106787

    Article  Google Scholar 

  99. Zambrano OA, Muñoz EC, Rodríguez SA, CoronadoJJ, (2020) Running-in period for the abrasive wear of austenitic steels. Wear 452–453:203298. https://doi.org/10.1016/j.wear.2020.203298

    Article  Google Scholar 

  100. Wang C, Hong J, Cui MM, Huang H, Zhang L, Yan JW (2022) The effects of simultaneous laser nitriding and texturing on surface hardness and tribological properties of Ti6Al4V. Surf Coat Technol 437:128358. https://doi.org/10.1016/J.SURFCOAT.2022.128358

    Article  Google Scholar 

  101. Wang JT, Bai XL, Shen XH, Liu XF, Wang BL (2022) Effect of micro-texture on substrate surface on adhesion performance of electroless Ni–P coating. J Manuf Process 74:296–307. https://doi.org/10.1016/j.jmapro.2021.12.025

    Article  Google Scholar 

  102. Chen KY, Yang XF, Zhang YF, Yang H, Lv GJ, Gao YL (2021) Research progress of improving surface friction properties by surface texture technology. Int J Adv Manuf Technol 116:2797–2821. https://doi.org/10.1007/S00170-021-07614-1

    Article  Google Scholar 

  103. Li D, Yang XF, Wang SR, Liu WB, Wan Z, Xia GF (2020) Research status and development of micro/nano texture. J Mech Strength 42:1348–1335. https://doi.org/10.16579/j.issn.1001.9669.2020.06.012

    Article  Google Scholar 

  104. Xing YQ, Wang XS, Du ZH, Zhu ZW, Wu Z, Liu L (2022) Synergistic effect of surface textures and DLC coatings for enhancing friction and wear performances of Si3N4/TiC ceramic. Ceram Int 48:514–524. https://doi.org/10.1016/j.ceramint.2021.09.128

    Article  Google Scholar 

  105. Xing YQ, Luo C, Wu Z, Zhang KD, Liu L (2022) Fabrication and properties of micro-additive manufactured Ni-based composite coatings by short-pulsed laser. Opt Laser Technol 150:107973. https://doi.org/10.1016/j.optlastec.2022.107973

    Article  Google Scholar 

  106. Wang JF, Xue WH, Gao SY, Li S, Duan DL (2021) Effect of groove surface texture on the fretting wear of Ti–6Al–4V alloy. Wear 486–487:204079. https://doi.org/10.1016/J.WEAR.2021.204079

    Article  Google Scholar 

  107. Gajrani KK, Sankar MR (2017) State of the art on micro to nano textured cutting tools. Mater Today Proc 4:3776–3785. https://doi.org/10.1016/j.matpr.2017.02.274

    Article  Google Scholar 

  108. Zhang KD, Deng JX, Sun JL, Jiang C, Liu YY, Chen S (2015) Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting. Appl Surf Sci 355:602–614. https://doi.org/10.1016/j.apsusc.2015.07.132

    Article  Google Scholar 

  109. Zhang KD, Deng JX, Meng R, Gao P, Yue HZ (2015) Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting. Int J Refract Metal Hard Mater 51:35–49. https://doi.org/10.1016/j.ijrmhm.2015.02.011

    Article  Google Scholar 

  110. Guo XH, Liu F, Zhang KD, Wang CY, Piao ZP, Sun LN (2020) Controllable preparation of micro-textures on WC/Co substrate surface by an integrated laser-dry etching process for improving PVD coatings adhesion. Appl Surf Sci 534:147580. https://doi.org/10.1016/j.apsusc.2020.147580

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51872122), the Postdoctoral Science Foundation of China (2017M620286), the Key Research and Development Program of Shandong Province, China (2018CXGC0809), Major Basic Research Projects of Shandong Natural Science Foundation (ZR2020ZD06), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), and Experts from Taishan Scholars and Youth Innovation in Science & Technology Support Plan of Shandong Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xuefeng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenlong, D., Xuefeng, Y., Fei, S. et al. Anti-friction and wear resistance analysis of cemented carbide coatings. Int J Adv Manuf Technol 122, 2795–2821 (2022). https://doi.org/10.1007/s00170-022-10092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10092-8

Keywords

Navigation