Skip to main content

Advertisement

Log in

Research progress on cutting machining simulation technology of metallic glasses

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metallic glasses have high strength, extreme corrosion resistance, good magnetism, low elastic modulus, and excellent biocompatibility which owns a wide range in industrial applications. However, the tremendous strength of metallic glasses makes it extremely difficult to machine. In recent years, although many academics worldwide have investigated the cutting mechanism and machinability of metallic glasses and achieved some significant results, which can be utilized as a reference to attain high-efficiency and precision machining of the material. However, most studies focus on experimental approaches which cause it difficult to obtain more in-depth results in material removal mechanism, surface formation mechanism, and other microcosmic physical phenomena. The acquisition of these mechanisms frequently requires the use of other research approaches, such as the technology of modeling and simulation. The simulation of machining technology with finite element and molecular dynamics has been gradually applied to turning, milling, and grinding of the material, which provides certain technological support for further interpretation and understanding of macro and micro machining mechanism. In view of this, this paper summarizes the relevant machining mechanism of metallic glasses, and then emphatically summarizes its research status, main achievements, and research progress of cutting simulation in recent years. Finally, the current research on cutting simulation of metallic glasses is objectively evaluated, of which its advantages and disadvantages are summarized. The development trend in cutting simulation of metallic glasses is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Zhang L, Zhu ZW, Fu H, Hong L, Zhang H (2017) Improving plasticity and work-hardening capability of beta-type bulk metallic glass composites by destabilizing beta phases. Mat Sci Eng A-Struct 689:404–410. https://doi.org/10.1016/j.msea.2017.02.070

    Article  Google Scholar 

  2. Wang WH (2011) A brief history of metallic glasses. Phys 40(11):701–709. http://www.wuli.ac.cn/CN/Y2011/V40/I11/701 [In Chinese]

  3. Loffler JF (2003) Bulk metallic glasses. Intermetallics 11(6):529–540. https://doi.org/10.1016/S0966-9795(03)00046-3

    Article  Google Scholar 

  4. Shen Y, Li Y, Chen C, Tsai H (2017) 3D printing of large, complex metallic glass structures. Mater Design 117:213–222. https://doi.org/10.1016/j.matdes.2016.12.087

    Article  Google Scholar 

  5. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mat Sci Eng R 44(2–3):45–89. https://doi.org/10.1016/j.mser.2004.03.001

    Article  Google Scholar 

  6. Chen MW (2011) A brief overview of bulk metallic glasses. Npg Asia Mater 3(9):82–90. https://doi.org/10.1038/asiamat.2011.30

    Article  Google Scholar 

  7. Liens A, Etiemble A, Rivory P, Balvay S, Pelletier JM, Cardinal S, Fabregue D, Kato H, Steyer P, Munhoz T, Adrien J, Courtois N, Hartmann DJ, Chevalier J (2018) On the potential of bulk metallic glasses for dental implantology: case study on Ti40Zr10Cu36Pd14. Materials 11(2):249. https://doi.org/10.3390/ma11020249

    Article  Google Scholar 

  8. Luo F, Sun F, Li KS, Gong F, Liang X, Wu XY, Ma J (2018) Ultrasonic assisted micro-shear punching of amorphous alloy. Mater Res Lett 6(10):545–551. https://doi.org/10.1080/21663831.2018.1500399

    Article  Google Scholar 

  9. Liu C, Duong N, Jahan MP, Ma J, Kirwin R (2019) Experimental investigation and numerical simulation of micro-edm of bulk metallic glass with focus on crater sizes. In: 47th SME North American Manufacturing Research Conference, Penn Univ, Behrend Coll, Erie, PA, USA, pp. 275–286. https://doi.org/10.1016/j.promfg.2019.06.151

  10. Basak AK, Zhang L (2018) Deformation of ti-based bulk metallic glass under a cutting tip. Tribol Lett 66(1):27. https://doi.org/10.1007/s11249-017-0975-9

    Article  Google Scholar 

  11. Khan MM, Deen KM, Haider W (2019) Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications. J Non-Cryst Solids 523:119544. https://doi.org/10.1016/j.jnoncrysol.2019.119544

    Article  Google Scholar 

  12. Eugen A (2013) Metallic glasses from “alchemy” to pure science: present and future of design, processing and applications of glassy metals. Mater Des 35:518–556. https://doi.org/10.1353/sew.2013.0051

    Article  Google Scholar 

  13. Sun K, Fu R, Liu XW, Xu LM, Wang G, Chen SY, Zhai QJ, Pauly S (2021) Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Bioact Mater 8:253–266. https://doi.org/10.1016/j.bioactmat.2021.06.018

    Article  Google Scholar 

  14. Suryanarayana C, Inoue A (2013) Iron-based bulk metallic glasses. Int Mater Rev 58(3):131–166. https://doi.org/10.1179/1743280412Y.0000000007

    Article  Google Scholar 

  15. Tsai PH, Li TH, Hsu KT, Ke JH, Jang J, Chu JP (2019) Coating thickness effect of metallic glass thin film on the fatigue-properties improvement of 7075 aluminum alloy. Thin Solid Films 677:68–72. https://doi.org/10.1016/j.tsf.2019.03.02

    Article  Google Scholar 

  16. Jung M, Yun C, Kim M, Rhie K, Jeon S (2020) Metallic glass-based dual-mode sensor for soft electronics. IEEE Sens J 20(20):12396–12401. https://doi.org/10.1109/jsen.2020.2999600

    Article  Google Scholar 

  17. Bae JY, Gwak EJ, Hwang GS, Hwang HW, Lee DJ, Lee JS, Joo YC, Sun JY, Jun SH, Ok MR, Kim JY, Kang SK (2021) Biodegradable metallic glass for stretchable transient electronics. Adv Sci 8(10):2004029. https://doi.org/10.1002/advs.202004029

    Article  Google Scholar 

  18. Yang C, Zhang C, Chen ZJ, Li Y, Yan WY, Yu HB, Liu L (2021) Three-dimensional hierarchical porous structures of metallic glass/copper composite catalysts by 3D printing for efficient wastewater treatments. ACS Appl Mater Inter 13(6):7227–7237. https://doi.org/10.1021/acsami.0c20832

    Article  Google Scholar 

  19. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267. https://doi.org/10.1016/j.actamat.2010.11.027

    Article  Google Scholar 

  20. Papini L, Ismagilov FR, Vavilov V, Gusakov DV (2019) Design and performance of a high-speed permanent magnet generator with amorphous alloy magnetic core for aerospace applications. IEEE Trans Ind Electron 67(3):1750–1758. https://doi.org/10.1109/tie.2019.2905806

    Article  Google Scholar 

  21. Qiao J, Yu P, Wu YX, Chen TX, Du YX, Yang JW (2020) A compact Review of laser welding technologies for amorphous alloys. Metals-Basel 10(12):1690. https://doi.org/10.3390/met10121690

    Article  Google Scholar 

  22. Fujita K, Morishita Y, Nishiyama N, Kimura H, Inoue A (2005) Cutting characteristics of bulk metallic glass. Mater Trans 46(12):2856–2863. https://doi.org/10.2320/matertrans.46.2856

    Article  Google Scholar 

  23. Bakkal M, Naksiler V (2009) Cutting mechanics of bulk metallic glass materials on meso-end milling. Mater Manuf Process 24(12):1249–1255. https://doi.org/10.1080/10426910903129711

    Article  Google Scholar 

  24. Bakkal M, Serbest E, Karipcin I, Kuzu AT, Karaguzel U, Derin B (2015) An experimental study on grinding of zr-based bulk metallic glass. Adv Manuf 3(4):282–291. https://doi.org/10.1007/s40436-015-0121-6

    Article  Google Scholar 

  25. Bakkal M, Shih AJ, Mcspadden SB, Liu CT, Scattergood RO (2005) Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. Int J Mach Tool Manuf 45(7–8):741–752. https://doi.org/10.1016/j.ijmachtools.2004.11.004

    Article  Google Scholar 

  26. Huang H, Yan J (2015) On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining. Appl Surf Sci 355:1306–1315. https://doi.org/10.1016/j.apsusc.2015.08.239

    Article  Google Scholar 

  27. Hou YG, Xu JK, Lian ZX, Pei QQ, Yang S, Zhai CT, Yu HD (2022) Surface integrity evolution of zirconium-based metallic glass multi-cut with wire electrical discharge machining. J Mater Eng Perform 31(5):4158–4166. https://doi.org/10.1007/s11665-021-06518-1

    Article  Google Scholar 

  28. Pauly S, Lber L, Petters R, Stoica M, Scudino S, Kuhn U, Eckert J (2013) Processing metallic glasses by selective laser melting. Mater Today 16(1–2):37–41. https://doi.org/10.1016/j.mattod.2013.01.018

    Article  Google Scholar 

  29. Kuriakose S, Patowari PK, Bhatt J (2017) Machinability study of Zr-Cu-Ti metallic glass by micro hole drilling using micro-USM. J Mater Process Technol 240:42–51. https://doi.org/10.1016/j.jmatprotec.2016.08.026

    Article  Google Scholar 

  30. Jin M, Zhao Y, Zhao GG, Fu JB, Wang JC (2019) Simulation research of laser-assisted machining of Vit1 metallic glass based on D-P constitutive model. Chin High Technol Lett 29(10):1003–1011. https://doi.org/10.3772/j.issn.1002-0470.2019.10.008[InChinese]

    Article  Google Scholar 

  31. Shan S, Feng P, Zha H, Feng F (2020) Building of longitudinal ultrasonic assisted turning system and its cutting simulation study on bulk metallic glass. Materials 13(14):3131. https://doi.org/10.3390/ma13143131

    Article  Google Scholar 

  32. Huang H, Yan J (2018) Multi-scale dimple creation on metallic glass by a two-step method involving nanoindentation and polishing. Appl Surf Sci 462:565–574. https://doi.org/10.1016/j.apsusc.2018.08.180

    Article  Google Scholar 

  33. Bakkal M, Shih AJ, Scattergood RO, Liu CT (2004) Machining of a Zr–Ti–Al–Cu–Ni metallic glass. Scripta Mater 50(5):583–588. https://doi.org/10.1016/j.scriptamat.2003.11.052

    Article  Google Scholar 

  34. Xie BY, Kumar MN, Yan DP, Jin XL (2017) Material behavior in micro milling of zirconium based bulk metallic glass. In: TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, pp. 363–373. https://doi.org/10.1007/978-3-319-51493-2_34

  35. Ding F, Wang CY, Lai ZJ, Zhang T, Zhu XG, Gao K (2021) Freezing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass. J Mech Eng 57(3):235–246. https://doi.org/10.3901/JME.2021.03.235[InChinese]

    Article  Google Scholar 

  36. Bakkal M, Shih AJ, Scattergood RO (2004) Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass. Int J Mach Tool Manuf 44(9):915–925. https://doi.org/10.1016/j.ijmachtools.2004.02.002

    Article  Google Scholar 

  37. Wang T, Wu XY, Zhang GQ, Xu B, Chen YH, Ruan SC (2020) Experimental study on machinability of Zr-based bulk metallic glass during micro milling. Micromachines-Basel 11(1):86. https://doi.org/10.3390/mi11010086

    Article  Google Scholar 

  38. Maroju NK, Yan DP, Xie B, Jin X (2018) Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass. J Manuf Process 35:40–50. https://doi.org/10.1016/j.jmapro.2018.07.020

    Article  Google Scholar 

  39. Li XY (2018) Study on cutting forces, chip morphology, tool wear of amorphous alloy in orthogonal free cutting. MA Dissertation, Yanshan University [In Chinese]

  40. Ray D, Puri AB, Nagahanumaiah (2019) Investigation on cutting forces and surface finish in mechanical micro milling of Zr-based bulk metallic glass. J Adv Manuf Syst 18(1):113–132. https://doi.org/10.1142/S0219686719500069

    Article  Google Scholar 

  41. Zhang FL, Huang GW, Liu JM, Du ZJ, Wang CY (2021) Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass. Int J Refract Met Hard Mater 97(9):105501. https://doi.org/10.1016/j.ijrmhm.2021.105501

    Article  Google Scholar 

  42. Chen X, Xiao JF, Zhu Y, Tian RJ, Shu XW, Xu JF (2017) Micro-machinability of bulk metallic glass in ultra-precision cutting. Mater Design 136:1–12. https://doi.org/10.1016/j.matdes.2017.09.049

    Article  Google Scholar 

  43. Huang H, Zhao HW, Shi CL, Wu BD, Fan ZQ, Wan SG, Geng CY (2012) Effect of residual chip on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope. Aip Adv 2(4):042193. https://doi.org/10.1063/1.4774032

    Article  Google Scholar 

  44. Ray D, Puri AB, Hanumaiah N (2020) Experimental analysis on quality aspects of micro-channels in mechanical micro milling of zr-based bulk metallic glass. Measurement 158:107622. https://doi.org/10.1016/j.measurement.2020.107622

    Article  Google Scholar 

  45. Fang ZL, Nagato K, Sugita N, Nakao M (2019) Influence of tool coating condition on side milling of amorphous laminated composite block. In: 2nd CIRP Conference on Composite Material Parts Manufacturing, Univ Sheffield, Adv Mfg Res Ctr, Catcliffe, ENGLAND pp:72–77. https://doi.org/10.1016/j.procir.2019.09.030

  46. Jomaa W, Mechri O, Levesque J, Songmene V, Bocher P, Gakwaya A (2017) Finite element simulation and analysis of serrated chip formation during high-speed machining of AA7075-T651 alloy. J Manuf Process 26:446–458. https://doi.org/10.1016/j.jmapro.2017.02.015

    Article  Google Scholar 

  47. Li BX, Zhang S, Zhang Q, Chen J, Zhang J (2018) Modeling of phase transformations induced by thermo-mechanical loads considering stress-strain effects in hard milling of AISI H13 steel. Int J Mech Sci 149:241–253. https://doi.org/10.1016/j.ijmecsci.2018.10.010

    Article  Google Scholar 

  48. Eder SJ, Leroch S, Grutzmacher PG, Spenger T, Heckes H (2021) A multiscale simulation approach to grinding ferrous surfaces for process optimization. Int J Mech Sci 194:106186. https://doi.org/10.1016/j.ijmecsci.2020.106186

    Article  Google Scholar 

  49. Lotfi M, Amin S, Aghaei M (2018) 3D FEM simulation of tool wear in ultrasonic assisted rotary turning. Ultrasonics 88:106. https://doi.org/10.1016/j.ultras.2018.03.013

    Article  Google Scholar 

  50. Goel S, Luo XC, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281. https://doi.org/10.1016/j.triboint.2012.06.027

    Article  Google Scholar 

  51. Xu YF, Liu HD, Zhang LY, Becton M (2020) Multiscale assessment of nanoscale manufacturing process on the freeform copper surface. Materials 13(14):3135. https://doi.org/10.3390/ma13143135

    Article  Google Scholar 

  52. Maroju NK, Jin XL (2022) Effect of speed ratio on shear angle and forces in elliptical vibration assisted machining. J Mater Process Technol 302:117498. https://doi.org/10.1016/j.jmatprotec.2022.117498

    Article  Google Scholar 

  53. Karkalos NE, Markopoulos AP (2019) Examination of the influence of cutting conditions on nano-metric face milling using MD models. In: 23rd International Conference on Innovative Manufacturing Engineering and Energy, Univ Pitesti, Pitesti, pp. 564. https://doi.org/10.1088/1757-899X/564/1/012008

  54. Zhou Q, Luo DW, Hua DP, Ye WT, Li S, Zou QG, Chen ZQ, Wang HF (2022) Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction. https://doi.org/10.1007/s40544-021-0581-6

    Article  Google Scholar 

  55. Ding F, Wang CY, Zhang T, Zheng LJ, Zhu XG (2018) High performance cutting of Zr-based bulk metallic glass: a review of chip formation. In: 8th CIRP Conference on High Performance Cutting, Budapest, pp. 421–424. https://doi.org/10.1016/j.procir.2018.08.294

  56. Williams E, Lavery N (2017) Laser processing of bulk metallic glass: a review. J Mater Process Technol 247:73–91. https://doi.org/10.1016/j.jmatprotec.2017.03.034

    Article  Google Scholar 

  57. Zhang L, Huang H (2019) Micro machining of bulk metallic glasses: a review. Int J Adv Manuf Technol 100(1–4):637–661. https://doi.org/10.1007/s00170-018-2726-y

    Article  Google Scholar 

  58. Shi B, Attia H (2010) Current status and future direction in the numerical modeling and simulation of machining processes: a critical literature review. Mach Sci Technol 14(2):149–188. https://doi.org/10.1080/10910344.2010.503455

    Article  Google Scholar 

  59. Sun Y, Li GH, He Z, Kong XC (2022) The advance of research on constitutive model used in finite element simulation of metal cutting. Proc Inst Mech Eng C-J Mech 236(9):4921–4945. https://doi.org/10.1177/09544062211052845

    Article  Google Scholar 

  60. Melkote SN, Grzesik W, Outeiro J, Rech J, Schulze V, Attia H, Arrazola PJ, M’Saoubi R, Saldana C (2017) Advances in material and friction data for modelling of metal machining. Cirp Ann-Manuf Technol 66(2):731–754. https://doi.org/10.1016/j.cirp.2017.05.002

    Article  Google Scholar 

  61. Karaguzel U, Bakka M (2011) Finite element simulation of milling bulk metallic glass. In: 6th International Conference and Exhibition on Design and Production of Machines and Dies/Molds

  62. Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater 51(12):3429–3443. https://doi.org/10.1016/S1359-6454(03)00164-2

  63. Flores KM, Dauskardt RH (2001) Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater 49(13):2527–2537. https://doi.org/10.1016/S1359-6454(01)00125-2

    Article  Google Scholar 

  64. Zhang ZF, He G, Eckert J, Schultz L (2003) Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett 91(4):045505. https://doi.org/10.1103/PhysRevLett.91.045505

    Article  Google Scholar 

  65. Schuh CA, Lund AC (2003) Atomistic basis for the plastic yield criterion of metallic glass. Nat Mater 2(7):449–452. https://doi.org/10.1038/nmat918

    Article  Google Scholar 

  66. Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett 95(19):195501. https://doi.org/10.1103/PhysRevLett.95.195501

    Article  Google Scholar 

  67. Pan D, Inoue A, Sakurai T, Chen MW (2008) Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc Natl Acad Sci USA 105(39):14769–14772. https://doi.org/10.1073/pnas.0806051105

    Article  Google Scholar 

  68. Liu WD, Liu KX (2010) Mechanical behavior of a Zr-based metallic glass at elevated temperature under high strain rate. J Appl Phys 108(3):4067. https://doi.org/10.1063/1.3467779

    Article  Google Scholar 

  69. Sun L, Jiang MQ, Dai LH (2010) Intrinsic correlation between dilatation and pressure sensitivity of plastic flow in metallic glasses. Scripta Mater 63(9):945–948. https://doi.org/10.1016/j.scriptamat.2010.07.011

    Article  Google Scholar 

  70. Zhao Y, Lu JP, Zhang Y, Wu FH, Huo DH (2016) Development of an analytical model based on Mohr-Coulomb criterion for cutting of metallic glasses. Int J Mech Sci 106:168–175. https://doi.org/10.1016/j.ijmecsci.2015.12.016

    Article  Google Scholar 

  71. Wang YW, Bian XL, Wu SW, Hussain I, Jia YD, Yi J, Wang G (2016) Rate dependent of strength in metallic glasses at different temperatures. Sci Rep-UK 6:27747. https://doi.org/10.1038/srep27747

  72. Zhang FW, Zhang C, Fu JB, Wang JC (2020) Cutting constitutive model of metallic glass based on stress-temperature sensitivity. In: 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing, Shanghai, China, pp. 187–193. https://doi.org/10.1109/wcmeim52463.2020.00046

  73. Zhang WG, Ma MZ, Song AJ, Liang SX, Zhang XY, Hao QH, Liu RP (2011) Measurement and estimation of the cutting temperature during lathe-turning of Zr-based bulk metallic glass. Adv Sci Lett 4(3):819–823. https://doi.org/10.1166/asl.2011.1509

    Article  Google Scholar 

  74. Zhang WX (2018) Effect of teat and shear stress on shear band formation during machining of amorphous alloy. MA Dissertation, Yanshan University [In Chinese]

  75. Zhao GG (2018) FEM Simulation of cutting temperature and force in orthogonal cutting of Vit1 metallic glass. MA Dissertation, Yanshan University [In Chinese]

  76. He GH, Li LX, Liu XL, Jiang T, Zou JP (2020) Study on the cutting characteristics and chip formation mechanism of typical amorphous alloy Fe40Ni40P14B6 under micro cutting conditions. J Mech Eng 56(3):10. https://doi.org/10.3901/JME.2020.03.223[InChinese]

    Article  Google Scholar 

  77. Gong YD, Liu Y, Sun Y, Wen XL, Li Q, Qu SS, Cai M (2018) Experimental and emulational investigations into grinding characteristics of Zr-based bulk metallic glass (BMG) using microgrinding. Int J Adv Manuf Technol 97(9–12):3431–3451. https://doi.org/10.1007/s00170-018-2212-6

    Article  Google Scholar 

  78. Lu JP (2015) The cutting mechanical modeling and experiment research of metallic glass based on M-C yield criterion. MA Dissertation, Yanshan University [In Chinese]

  79. You JX (2020) A research on micro-cutting performance and chip formation mechanism of Zr-based metallic glass. MA Dissertation, Huazhong University of Science and Technology [In Chinese]

  80. Maroju NK, Jin X (2019) Mechanism of chip segmentation in orthogonal cutting of Zr-based bulk metallic glass. J Manuf Sci E-T Asme 141(8):81003–81013. https://doi.org/10.1115/1.4043837

    Article  Google Scholar 

  81. Park SS, Wei Y, Jin XL (2018) Direct laser assisted machining with a sapphire tool for bulk metallic glass. Cirp Ann-Manuf Technol 67(1):193–196. https://doi.org/10.1016/j.cirp.2018.04.070

    Article  Google Scholar 

  82. Chau SY, To S, Sun ZW, Wu HB (2020) Twinned-serrated chip formation with minor shear band in ultra-precision micro-cutting of bulk metallic glass. Int J Adv Manuf Technol 107(11–12):4437–4448. https://doi.org/10.1007/s00170-020-04977-9

    Article  Google Scholar 

  83. Gong QR (2019) Study on laser assisted micromachining mechanism of amorphous alloy. MA Dissertation, Harbin Institute of Technology [In Chinese]

  84. Wang DD (2019) Experimental and simulation study on ultrasonic torsional vibration assisted milling of amorphous alloys. MA Dissertation, Yanshan University [In Chinese]

  85. Jiang MQ, Dai LH (2009) Formation mechanism of lamellar chip during machining of bulk metallic glass. Acta Mater 57(9):2730–2738. https://doi.org/10.1016/j.actamat.2009.02.031

    Article  Google Scholar 

  86. Baker M, Rosler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513. https://doi.org/10.1016/S0045-7949(02)00023-8

    Article  Google Scholar 

  87. Zhang D, Zhang XM, Nie GC, Yang ZY, Ding H (2021) Characterization of material strain and thermal softening effects in the cutting process. Int J Mach Tool Manuf 160:103672. https://doi.org/10.1016/j.ijmachtools.2020.103672

    Article  Google Scholar 

  88. Gong QR, Qiu P, Xu SL (2020) Evolution of chip-deformation mechanisms with increasing temperature in laser-assisted microcutting of amorphous alloy. Int J Automat Technol 14(4):568–574. https://doi.org/10.20965/ijat.2020.p0568

  89. Wang JC, Zhang ZH, Zhang C, Chen JC, Fu J (2020) Simulation and experiment study of burrs in micro-milling zr-based metallic glass. J Mech Sci Technol 34(7):3027–3039. https://doi.org/10.1007/s12206-020-0634-1

    Article  Google Scholar 

  90. Fu JB (2018) Simulation and experimental study on the formation of burr in micro milling of metallic glass. MA Dissertation, Yanshan University [In Chinese]

  91. Xu GF (2017) Experimental study of wear morphology of mental glass (Vit1) cutting tool. MA Dissertation, Yanshan University [In Chinese]

  92. You KY, Fang FZ, Yan GP (2021) Surface generation of tungsten carbide in laser-assisted diamond turning. Int J Mach Tool Manuf 168:103770. https://doi.org/10.1016/j.ijmachtools.2021.103770

    Article  Google Scholar 

  93. Goel S, Luo XC, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manuf 88:131–164. https://doi.org/10.1016/j.ijmachtools.2014.09.013

    Article  Google Scholar 

  94. Qiu C (2014) Study on nanomechanical properties and nanocutting mechanism of amorphous alloy. MA Dissertation, Tianjin: Tianjin University [In Chinese]

  95. Chen Q, Zhu PZ, Fang FZ, Yuan DD, Shen XC (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101–110. https://doi.org/10.1016/j.apsusc.2014.02.179

    Article  Google Scholar 

  96. Imran M, Hussain F, Rashid M, Cai YQ, Ahmad SA (2013) Mechanical behavior of Cu-Zr bulk metallic glasses (Bmetallic glasses): A molecular dynamics approach. Chinese Phys B 22(9):096101. https://doi.org/10.1088/1674-1056/22/9/096101

    Article  Google Scholar 

  97. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5):2727–2742. https://doi.org/10.1103/PhysRevB.46.2727

    Article  Google Scholar 

  98. Zhao Y, Li TT, Zhang Y, Huo DH (2017) Effect of machining parameters on the cutting force and microstructure in nanometric cutting of Cu50Zr50 metallic glass. Curr Nanosci 13(1):48–54. https://doi.org/10.2174/1573413712666160530125015

    Article  Google Scholar 

  99. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000. https://doi.org/10.1103/PhysRevB.37.6991

    Article  Google Scholar 

  100. Kadupitiya J, Fox GC, Jadhao V (2022) Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Mach Learn-Sci Technol 3(2):025002. https://doi.org/10.1088/2632-2153/ac5f60

    Article  Google Scholar 

  101. Niklasson A (2020) Extended Lagrangian Born-Oppenheimer molecular dynamics using a Krylov subspace approximation. J Chem Phys 152(10):104103. https://doi.org/10.1063/1.5143270

    Article  Google Scholar 

  102. Zhang P, Qing H (2021) Free vibration analysis of Euler-Bernoulli curved beams using two-phase nonlocal integral models. J Vib Control 1–18. https://doi.org/10.1177/10775463211022483

    Article  Google Scholar 

  103. Ciccotti G, Ferrario M (2018) Holonomic constraints: a case for statistical mechanics of non-hamiltonian systems. Comput 6(1):11. https://doi.org/10.3390/computation6010011

    Article  Google Scholar 

  104. Shockly M, Duong N, Ma J, Le S, Jahan MP, Sundaram M (2019) Numerical investigation of the effects of operating parameters in the vibration assisted nano impact machining of single crystalline silicon by loose abrasive using molecular dynamics simulation. J Manuf Process 43:12–19. https://doi.org/10.1016/j.jmapro.2019.03.044

    Article  Google Scholar 

  105. Maggs AC (2013) Adding an energy-like conservation law to the leapfrog integrator. J Phys A-Math Theor 46(45):455001. https://doi.org/10.1088/1751-8113/46/45/455001

    Article  MathSciNet  MATH  Google Scholar 

  106. Wu HA (2004) Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Comp Mater Sci 31(3–4):287–291. https://doi.org/10.1016/j.commatsci.2004.03.017

    Article  Google Scholar 

  107. Miller RE, Tadmor EB, Gibson JS, Bernstein N, Pavia F (2016) Molecular dynamics at constant Cauchy stress. J Chem Phys 144(18):184107. https://doi.org/10.1063/1.4948711

    Article  Google Scholar 

  108. Avila KE, Kuechemann S, Alhafez IA, Urbassek HM (2019) Shear-transformation zone activation during loading and unloading in nanoindentation of metallic glasses. Materials 12(9):1477. https://doi.org/10.3390/ma12091477

    Article  Google Scholar 

  109. Liu H, Guo YB, Du YL (2022) The removal mechanism transformation from crystalline to amorphous in nano-machining Cu-Al alloy. Mater Today Commun 31:103523. https://doi.org/10.1016/j.mtcomm.2022.103523

    Article  Google Scholar 

  110. Zhu PZ, Chen Q, Fang FZ, Yuan DD, Shen XC (2014) Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl Surf Sci 317:432–442. https://doi.org/10.1016/j.apsusc.2014.08.031

    Article  Google Scholar 

  111. Zhao Y, Wei XL, Zhang Y, Wu FH, Huo DH (2016) Investigation on cutting force and temperature of cutting Cu50Zr50 metallic glass by molecular dynamics simulation. Key Eng Mater 667:88–94. https://doi.org/10.4028/www.scientific.net/KEM.667.88

    Article  Google Scholar 

  112. Zhu P, Fang F (2014) On the mechanism of material removal in nanometric cutting of metallic glass. Appl Phys A-Mater 116(2):605–610. https://doi.org/10.1007/s00339-013-8189-y

    Article  Google Scholar 

  113. Li TT (2017) Effect of softening and dilatancy on nanometric cutting mechanical properties of amorphous alloy. MA Dissertation, Yanshan University [In Chinese]

  114. Fang ZL, Nagato K, Liu SE, Sugita N, Nakao M (2021) Investigation into surface integrity and magnetic property of FeSiB metallic glass in two-dimensional cutting. J Manuf Process 64:1098–1104. https://doi.org/10.1016/j.jmapro.2021.02.026

    Article  Google Scholar 

  115. Wu CD, Fang TH, Su JK (2017) Nanometric mechanical cutting of metallic glass investigated using atomistic simulation. Appl Surf Sci 396:319–326. https://doi.org/10.1016/j.apsusc.2016.10.143

    Article  Google Scholar 

  116. Liu SJ (2018) Effect of cutting temperature on the formation mechanism of Cu50Zr50 shear band in metallic glass. MA Dissertation, Yanshan University [In Chinese]

  117. Jia MS (2016) Research on temperature field in the nanometric cutting process of amorphous copper by molecular dynamics simulation. MA Dissertation, Yanshan University [In Chinese]

  118. Xiong J, Wang H, Zhang GQ, Chen YB, Ma J, Mo RD (2019) Machinability and surface generation of Pd40Ni10Cu30P20 bulk metallic glass in single-point diamond turning. Micromachines-Basel 11(1):4. https://doi.org/10.3390/mi11010004

    Article  Google Scholar 

  119. Zhao Y, Zhang Y, Liu RP (2012) MD simulation of chip formation in nanometric cutting of metallic glass. Adv Mater Res 476–478:434–437. https://doi.org/10.4028/www.scientific.net/AMR.476-478.434

    Article  Google Scholar 

  120. Avila KE, Kuchemann S, Alhafez IA, Urbassek HM (2020) An atomistic study of shear-band formation during cutting of metallic glasses. J Appl Phys 127(11):115101. https://doi.org/10.1063/1.5141336

    Article  Google Scholar 

  121. Avila KE, Vardanyan VH, Alhafez IA, Zimmermann M, Kirsch B, Urbassek HM (2020) Applicability of cutting theory to nanocutting of metallic glasses: atomistic simulation. J Non-Cryst Solids 550:120363. https://doi.org/10.1016/j.jnoncrysol.2020.120363

    Article  Google Scholar 

  122. Avila KE, Kuchemann S, Urbassek HM (2021) Interaction between parallel shear band in a metallic glass. J Non-Cryst Solids 566:120882. https://doi.org/10.1016/j.jnoncrysol.2021.120882

    Article  Google Scholar 

  123. Avila KE, Kuchemann S, Pinzon RE, Urbassek HM (2021) Influence of stoichiometry on indentation-induced plasticity in CuZr glasses. Appl Phys A-Mater 127(9):702. https://doi.org/10.1007/s00339-021-04856-4

    Article  Google Scholar 

  124. Avila KE, Vardanyan VH, Urbassek HM (2021) Transition to chip serration in simulated cutting of metallic glasses. Eur Phys J B 94:152. https://doi.org/10.1140/epjb/s10051-021-00160-5

    Article  Google Scholar 

  125. Zhao Y, Wei XL, Zhang Y, Wang JC, Huo DH (2016) Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: a molecular dynamics simulation approach. J Non-Cryst Solids 439:21–29. https://doi.org/10.1016/j.jnoncrysol.2016.02.014

    Article  Google Scholar 

  126. Ueda K, Fu H, Manabe K (1999) Atomic scale level chip formation of amorphous metal investigated by using AFM and MD-RPFEM simulation. Mach Sci Technol 3(1):61–75. https://doi.org/10.1080/10940349908945683

    Article  Google Scholar 

  127. Wei XL (2015) Research on nanometric cutting of amorphous alloys by molecular dynamics simulation. MA Dissertation, Yanshan University [In Chinese]

  128. Xin SH (2019) Study on the influence of free volume on the formation mechanism of amorphous alloy shear band. MA Dissertation, Yanshan University [In Chinese]

  129. Wang PC, Yu JG, Zhang QX (2020) Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface. Comp Mater Sci 184:109915. https://doi.org/10.1016/j.commatsci.2020.109915

    Article  Google Scholar 

  130. Vardanyan VH, Avila KE, Kuchemann S, Urbassek HM (2021) Interaction of dislocations and shear band in cutting of an amorphous-crystalline bilayer: an atomistic study. Comp Mater Sci 192:110379. https://doi.org/10.1016/j.commatsci.2021.110379

    Article  Google Scholar 

  131. Vardanyan VH, Avila KE, Kuchemann S, Urbassek HM (2021) Response of an amorphous/crystalline interface to nanoindentation: an atomistic study. Appl Surf Sci 551:149285. https://doi.org/10.1016/j.apsusc.2021.149285

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China [grant number U2004169]; the Young Backbone Teacher Cultivation Plan for Higher Education of Henan University [grant number 2020GGJS129]; Scientific and Technological Project of Henan Province [grant number 202102210275]; and the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province [grant number 20IRTSTHN015].

Author information

Authors and Affiliations

Authors

Contributions

Wenbin He: writing original draft. Dingkun Wang: writing original draft and editing. Wuyi Ming: writing guidance. Jun Ma: check original draft. Kun Liu: check original draft. Jinguang Du: guiding framework of paper and check original draft.

Corresponding author

Correspondence to Jinguang Du.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Wang, D., Ming, W. et al. Research progress on cutting machining simulation technology of metallic glasses. Int J Adv Manuf Technol 122, 1167–1193 (2022). https://doi.org/10.1007/s00170-022-09968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09968-6

Keywords

Navigation