Skip to main content
Log in

Numerical simulation for electron beam selective melting PBF additive manufacturing of molybdenum

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Molybdenum is a newly added material in additive manufacturing material cabinet, and it is under the spotlight owing to its crucial applications. The high-energy electron beam selective melting (EBSM) process is supposed to be a promising technique for molybdenum printing because of its vacuum environment. This paper presents EBSM numerical process simulation for molybdenum on macro- and mesoscale established with exclusive powder material modeling. Experimentally determined, process parameters are implemented in 3D macro- and 2D mesoscale models for a profound process insight. Primarily molybdenum powder material model is established, and a multi-track FEM simulation is performed to predict melt pool configuration, temperature field and phase transformation. Next, powder consolidation mechanism, side surface roughness, porosity, and voids are investigated through a CFD model, where the molybdenum particles are explicitly considered from the EBSM process viewpoint. Results proved the effectiveness of the numerical simulation for detailed EBSM process understanding for molybdenum material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The simulation data may not be available.

References

  1. Rajaguru K, Karthikeyan T, Vijayan V (2020) Additive manufacturing – State of art. Materials Today: Proceedings 21:628–633. https://doi.org/10.1016/j.matpr.2019.06.728

    Article  Google Scholar 

  2. Zafar MQ, Zhao H (2020) 4D printing: future insight in additive manufacturing. Met Mater Int 26:564–585. https://doi.org/10.1007/s12540-019-00441-w

    Article  Google Scholar 

  3. Faidel D, Jonas D, Natour G, Behr W (2015) Investigation of the selective laser melting process with molybdenum powder. Addit Manuf 8:88–94. https://doi.org/10.1016/j.addma.2015.09.002

    Article  Google Scholar 

  4. Johnson JL, Palmer T (2019) Directed energy deposition of molybdenum. Int J Refract Met Hard Mater 84:105029. https://doi.org/10.1016/j.ijrmhm.2019.105029

    Article  Google Scholar 

  5. Braun J, Kaserer L, Stajkovic J, Leitz KH, Tabernig B, Singer P, Leibenguth P, Gspan C, Kestler H, Leichtfried G (2019) Molybdenum and tungsten manufactured by selective laser melting: analysis of defect structure and solidification mechanisms. Int J Refract Met Hard Mater 84:104999. https://doi.org/10.1016/j.ijrmhm.2019.104999

    Article  Google Scholar 

  6. SE P Molybdenum. The all-rounder among the specialists. https://www.plansee.com/en/materials/molybdenum.html

  7. Ciulik J, Shields JA, Kumar P., Leonhardt T., Johnson JL (2015) Properties and selection of PM refractory metals. In: ASM Handbook Vol.7,Powder Technologies and Application. ASM International, Materials Park, OH, pp 594–598

  8. Shields J (2013) Applications of molybdenum metal and its alloys. Int Molybdenum Assoc. ISBN 978-1-907470-30-1

  9. Wang D, Yu C, Ma J, Liu W, Shen Z (2017) Densification and crack suppression in selective laser melting of pure molybdenum. Mater Des 129:44–52. https://doi.org/10.1016/j.matdes.2017.04.094

    Article  Google Scholar 

  10. Kolarikova M, Kolarik L, Vondrous P (2012) Welding of thin molybdenum sheets by EBW and GTAW. In: 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation 2012. pp 1005–1008

  11. Gong X, Anderson T, Chou K (2014) Review on powder - based electron beam additive manufacturing technology. Manuf Rev 1:1–9. https://doi.org/10.1051/mfreview/2014001

    Article  Google Scholar 

  12. Murr LE, Gaytan SM (2014) 10.06 - Electron beam melting. In Saleem H, Gilmar FB, Chester J VT, Bekir Y (eds) Comprehensive materials processing. Elsevier, pp 135–161 https://doi.org/10.1016/B978-0-08-096532-1.01004-9

  13. Leitz KH, Grohs C, Singer P, Tabernig B, Plankensteiner A, Kestler H, Sigl LS (2018) Fundamental analysis of the influence of powder characteristics in selective laser melting of molybdenum based on a multi-physical simulation model. Int J Refract Met Hard Mater 72:1–8. https://doi.org/10.1016/j.ijrmhm.2017.11.034

    Article  Google Scholar 

  14. Leung CLA, Tosi R, Muzangaza E, Nonni S, Withers PJ, Lee PD (2019) Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V components. Mater Des 174:107792. https://doi.org/10.1016/j.matdes.2019.107792

    Article  Google Scholar 

  15. Galati M, Iuliano L (2018) A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf 19:1–20. https://doi.org/10.1016/j.addma.2017.11.001

    Article  Google Scholar 

  16. Körner C, Helmer H, Bauereiß A, Singer RF (2014) Tailoring the grain structure of IN718 during selective electron beam melting. In: MATEC Web of Conferences. https://doi.org/10.1051/matecconf/20141408001

  17. Murr LE, Li S (2016) Electron-beam additive manufacturing of high-temperature metals. MRS Bull 41:752–757

    Article  Google Scholar 

  18. Konyashin I, Hinners H, Ries B, Kirchner A, Klöden B, Kieback B, Nilen RWN, Sidorenko D (2019) Additive manufacturing of WC-13%Co by selective electron beam melting: achievements and challenges. Int J Refract Met Hard Mater 84:105028. https://doi.org/10.1016/J.IJRMHM.2019.105028

    Article  Google Scholar 

  19. Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA, Carlson NN, Newman CK, Haut T, Bakosi J, Gibbs JW, Livescu V, Vander Wiel SA, Clarke AJ, Schraad MW, Blacker T, Lim H, Rodgers T, Owen S, Abdeljawad F, Madison J, Anderson AT, Fattebert JL, Ferencz RM, Hodge NE, Khairallah SA, Walton O (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci 21:198–206. https://doi.org/10.1016/j.cossms.2016.12.001

    Article  Google Scholar 

  20. Hashemi SM, Parvizi S, Baghbanijavid H, Tan ATL, Nematollahi M, Ramazani A, Fang NX, Elahinia M (2021) Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review. Int Mater Rev. https://doi.org/10.1080/09506608.2020.1868889

  21. Yan W, Lin S, Kafka OL et al (2018) Modeling process-structure-property relationships for additive manufacturing. Front Mech Eng 13:482–492. https://doi.org/10.1007/s11465-018-0505-y

  22. Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333. https://doi.org/10.1016/j.actamat.2017.05.061

    Article  Google Scholar 

  23. Qi HB, Yan YN, Lin F, Zhang RJ (2007) Scanning method of filling lines in electron beam selective melting. Proc Inst Mech Eng Part B J Eng Manuf 221:1685–1694. https://doi.org/10.1243/09544054JEM913

    Article  Google Scholar 

  24. Zäh MF, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4:15–23. https://doi.org/10.1007/s11740-009-0197-6

    Article  Google Scholar 

  25. Cheng B, Chou K (2013) Melt pool geometry simulations for powder-based electron beam additive manufacturing. In: 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013

  26. Wang X, Gong X, Chou K (2015) Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manufacturing 1:287-295. https://doi.org/10.1016/j.promfg.2015.09.026.

  27. Shen N, Chou K (2012) Numerical thermal analysis in electron beam additive manufacturing with preheating effects. In: 23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2012

  28. Riedlbauer D, Scharowsky T, Singer RF, Steinmann P, Körner C, Mergheim J (2017) Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 88:1309–1317. https://doi.org/10.1007/s00170-016-8819-6

    Article  Google Scholar 

  29. Gong X, Cheng B, Price S, Chou K (2013) Powder-bed electron-beam-melting additive manufacturing: powder characterization, process simulation and metrology. Early Career Tech Conf Birmingham, AL

  30. Cheng B, Price S, Lydon J, Cooper K, Chou K (2014) On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J Manuf Sci Eng 136. https://doi.org/10.1115/1.4028484

  31. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  32. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211:978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016

    Article  Google Scholar 

  33. Wu C, Zafar MQ, Zhao H (2021) Investigation on surface roughness in electron beam selective melting by mesoscale model. Mater Sci Forum 1016 MSF:1630–1635. https://doi.org/10.4028/www.scientific.net/MSF.1016.1630

    Article  Google Scholar 

  34. Wu C, Zafar MQ, Zhao H (2021) Numerical investigation of consolidation mechanism in powder bed fusion considering layer characteristics during multilayer process. Int J Adv Manuf Technol 113:2087–2100. https://doi.org/10.1007/s00170-021-06768-2

    Article  Google Scholar 

  35. Jamshidinia M, Kong F, Kovacevic R (2013) The Coupled CFD-FEM Model of Electron Beam Melting® (EBM).  https://doi.org/10.13140/2.1.4136.2245

  36. Markl M, Körner C (2016) Multiscale modeling of powder bed–based additive manufacturing. Annu Rev Mater Res 46:93–123. https://doi.org/10.1146/annurev-matsci-070115-032158

    Article  Google Scholar 

  37. Zafar MQ, Wu CC, Zhao H, Wang J, Hu X (2020) Finite element framework for electron beam melting process simulation. Int J Adv Manuf Technol 109:2095–2112

    Article  Google Scholar 

  38. Arcam (2016) JUST ADD: Arcam – the innovative leader in additive manufacturing solutions for the production of orthopedic implants and aerospace components. 19

  39. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev 61:361–377. https://doi.org/10.1080/09506608.2016.1176289

    Article  Google Scholar 

  40. Tianjin Qingyan Zhi Shu Technology Co., Ltd China. en.qbeam-3d.com

  41. Qian Y, Yan W, Lin F (2018) Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp J 24:1586–1598. https://doi.org/10.1108/RPJ-05-2017-0088

    Article  Google Scholar 

  42. Guo C, Lin F, Ge W (2014) Study on the fabrication process of 316L stainless steel via electron beam selective melting. Jixie Gongcheng Xuebao/Journal Mech Eng 50:152. https://doi.org/10.3901/JME.2014.21.152

    Article  Google Scholar 

  43. Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB (2015) XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting. Mater Charact 102:47–61. https://doi.org/10.1016/j.matchar.2015.02.008

    Article  Google Scholar 

  44. Gusarov AV, Laoui T, Froyen L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46:1103–1109. https://doi.org/10.1016/S0017-9310(02)00370-8

    Article  MATH  Google Scholar 

  45. Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L (2003) Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyp J 9:314–326. https://doi.org/10.1108/13552540310502211

    Article  Google Scholar 

  46. Galati M, Snis A, Iuliano L (2019) Powder bed properties modelling and 3D thermo-mechanical simulation of the additive manufacturing Electron Beam Melting process. Addit Manuf 30:100897. https://doi.org/10.1016/j.addma.2019.100897

    Article  Google Scholar 

  47. Raiser Z (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York, NY

    Google Scholar 

  48. Jamshidinia M, Kong F, Kovacevic R (2013) Numerical Modeling of Heat Distribution in the Electron Beam Melting ® of Ti-6Al-4V. J Manuf Sci Eng 135. https://doi.org/10.1115/1.4025746

  49. Shen N, Chou K (2012) Thermal modeling of electron beam additive manufacturing process: powder sintering effects. In: ASME 2012 International Manufacturing Science and Engineering Conference. p 287

  50. Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21:085011. https://doi.org/10.1088/0965-0393/21/8/085011

    Article  Google Scholar 

  51. Hibbitt Karlsson, Sorensen (2004) Abaqus Analysis... - Google Scholar. https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=Hibbitt,+Karlsson,+Sorensen,+2004.+Abaqus+Analysis+Users+Manual,+25.2.3+Dflux.+Abaqus,+Inc. Accessed 29 May 2021

  52. (2018) ABAQUS 2018 Documentation, Dassault Systèmes, Providence (USA)

  53. Inc ANSYS (2013) ANSYS FLUENT Theory Guide. Release 182:21–29. https://doi.org/10.1016/0140-3664(87)90311-2

    Article  Google Scholar 

  54. Markl M, Körner C (2018) Powder layer deposition algorithm for additive manufacturing simulations. Powder Technol 330:125–136. https://doi.org/10.1016/j.powtec.2018.02.026

    Article  Google Scholar 

  55. Lee YS, Nandwana P, Zhang W (2018) Dynamic simulation of powder packing structure for powder bed additive manufacturing. Int J Adv Manuf Technol 96:1507–1520. https://doi.org/10.1007/s00170-018-1697-3

    Article  Google Scholar 

Download references

Acknowledgements

The principal author would like to extend his gratitude to Prof. Ghulam Hussain and Ghulam Ishaq Khan Institute of Engineering Science & Technology, Topi, Pakistan, for visiting scholar position during pandemic outbreak.

Funding

This work is supported by the funding of the National Key R&D Program of China (2017YFB1103300), State Key Lab of Tribology, Tsinghua University China (SKLT2018B06), and National Natural Science Foundation of China (51975320).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Qasim Zafar: Molybdenum material modeling, FEM simulation, and writing/revision/proofreading—original draft. Chaochao Wu: mesoscale simulation and writing. Prof. Haiyan Zhao: supervision, resources, and review. Du Kai: EBSM experiments. Prof. Qianming Gong: experiments and supervision.

Corresponding authors

Correspondence to Haiyan Zhao or Qianming Gong.

Ethics declarations

Ethical approval

It is to affirm that all the authors enlisted in this manuscript have agreed for authorship and sequence of authorship, and they read and approved the manuscript for submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M.Q., Wu, C., Zhao, H. et al. Numerical simulation for electron beam selective melting PBF additive manufacturing of molybdenum. Int J Adv Manuf Technol 117, 1575–1588 (2021). https://doi.org/10.1007/s00170-021-07671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07671-6

Keywords

Navigation