Skip to main content
Log in

Machine tool analyzer: a device for identifying 13 position-independent geometric errors for five-axis machine tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We introduce a prototype “machine tool analyzer” (MTA), consisting of a nest of five displacement sensors and a dual-ball system with two centering structures, designed to identify 13 position-independent geometric errors (PIGEs) in five-axis machine tools. The 13 PIGEs include three squareness errors in the three linear axes, two squareness errors and two offset errors in the rotary/tilting axis, and two squareness errors in the spindle axis. The MTA completes four circular paths, during which an identification algorithm identifies thirteen possible PIGEs and set-up errors. The MTA was applied to a commercial five-axis machine tool with a swivel head/rotary table and verified experimentally. Cost-effective measurements were achieved using a single set-up of the nest and associated system. In addition, a circular test using a double ball-bar was used to test the volumetric accuracy of the five-axis machine tool and verify the identified PIGEs. The maximum deviation, minimum deviation, and PV values in the circular test were 109, 55, and 55 μm, respectively, without compensation for errors imparted by the PIGEs, and 38, 5, and 33 μm, respectively, with compensation. This demonstrated the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

b ij, c ij :

j-th rotation angles at i-th measurements of a B-axis and a C-axis, respectively (i = 1, …, 4; j = 1, …, ni), rad

l nominal :

Nominal tool length between the origin of the B-axis and the UB center of a dual-ball system, mm

l offset :

Offset between the UB center and LB center of a dual-ball system, mm

ΔL i,j,k :

Deviation in the k-direction based on the j-th measured deviation at the i-th measurement (i = 1, …, 4; j = 1, …, ni; k = radial, axial), mm

m i :

i-th displacement sensor (i = 1, …, 5)

n i :

Sampling number at the i-th measurement (i = 1, …, 4)

o ij :

Offset error of the j-axis relative to the i-direction (i = x, y, z; j = b, c, s), mm

s ij :

Squareness error of the j-axis around the i-direction (i = x, y, z; j = x, y, z, b, c, s), rad

(d, 0, h i):

Nominal coordinate of a ball in coordinate system {C} for the i-th measurement (i = 1, …, 4), mm

(w xi, w yi, w zi):

Set-up errors of measuring sensors in the x, y, and z directions at the i-th measurement (i = 1, …, 4), mm

(x ij, y ij, z ij):

j-th nominal coordinate of X, Y, and Z axes at the i-th measurement (i = 1, …, 4; j = 1, …, ni), mm

x ij, Δy ij, Δz ij):

j-th measured deviations in the x, y, and z directions at the i-th measurement (i = 1, …, 4; j = 1, …, ni), mm

{ i } :

Coordinate system of axis i {i = X, Y, Z, B, C, S}

{ R }, { W }, { T } :

Coordinate systems of the reference, workpiece, and tool, respectively

\( {\boldsymbol{\uptau}}_i^j \) :

4 × 4 homogeneous transformation matrix from j coordinate system to i coordinate system

References

  1. Smith GT (2016) Laser instrumentation and calibration. In: Machine tool metrology. Springer, Cham. https://doi.org/10.1007/978-3-319-25109-7_2

    Chapter  Google Scholar 

  2. Olvera D, López de Lacalle LN, Compeán FI, Fz-Valdivielso A, Lamikiz A, Campa FJ (2012) Analysis of the tool tip radial stiffness of turn–milling centers. Int J Adv Manuf Technol 60:883–891. https://doi.org/10.1007/s00170-011-3645-3

    Article  Google Scholar 

  3. Barakat NA, Elbestawi MA, Spence AD (2000) Kinematic and geometric error compensation of a coordinate measuring machine. Int J Mach Tools Manuf 40:833–850. https://doi.org/10.1016/S0890-6955(99)00098-X

    Article  Google Scholar 

  4. Fan J, Tao H, Pan R, Chen D (2020) Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity. Int J Adv Manuf Technol 111:13–24. https://doi.org/10.1007/s00170-020-06096-x

    Article  Google Scholar 

  5. Gomez-Acedo E, Olarra A, Orive J, Lopez de la Calle LN (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with Kalman filter. Int J Mach Tools Manuf 75:100–108. https://doi.org/10.1016/j.ijmachtools.2013.09.005

    Article  Google Scholar 

  6. Yang B, Liu Z (2020) Thermal error modeling by integrating GWO and ANFIS algorithms for the gear hobbing machine. Int J Adv Manuf Technol 109:2441–2456. https://doi.org/10.1007/s00170-020-05791-z

    Article  Google Scholar 

  7. Lee KI, Yang SH (2013) Measurement and verification of position–independent geometric errors of a five–axis machine tool using a double ball–bar. Int J Mach Tools Manuf 70:45–52. https://doi.org/10.1016/j.ijmachtools.2013.03.010

    Article  Google Scholar 

  8. ISO 230–1 (2012) Test code for machine tools – part 1: geometric accuracy of machines operating under no–load or quasi–static conditions. ISO

  9. Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five–axis machining centers with kinematic errors. Precis Eng 33:194–201. https://doi.org/10.1016/j.precisioneng.2008.06.001

    Article  Google Scholar 

  10. ISO 230–7 (2015) Test code for machine tools – part 7: geometric accuracy of axes of rotation. ISO

  11. ISO 10791–2 (2001) Test conditions for machining centres part 2: geometric tests for machines with vertical spindle or universal heads with vertical primary rotary axis. ISO

  12. Bringmann B, Knapp W (2006) Model–based ‘Chase–the–ball’ calibration of a 5–axes machining center. CIRP Ann 55:531–534. https://doi.org/10.1016/S0007-8506(07)60475-2

    Article  Google Scholar 

  13. Givi M, Mayer JRR (2014) Volumetric error formulation and mismatch test for five–axis CNC machine compensation using differential kinematics and ephemeral G–code. Int J Adv Manuf Technol 77:1645–1653. https://doi.org/10.1007/s00170-014-6558-0

    Article  Google Scholar 

  14. Smith GT (2016) Measurement and machine tools–an introduction. In: Machine Tool Metrology. Springer, Cham. https://doi.org/10.1007/978-3-319-25109-7_1

  15. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines–an update. CIRP Ann 57:660–675. https://doi.org/10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  16. Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three–axis and five–axis machine tools: a review. Int J Autom Technol 6:110–124. https://doi.org/10.20965/ijat.2012.p0110

    Article  Google Scholar 

  17. Iñigo B, Ibabe A, Aguirre G, Urreta H, López de Lacalle LN (2019) Analysis of laser tracker–based volumetric error mapping strategies for large machine tools. Metals 9:757. https://doi.org/10.3390/met9070757

    Article  Google Scholar 

  18. ISO/TR 230–11 (2018) Test code for machine tools – part 11: measuring instruments suitable for machine tool geometry tests. ISO

  19. Lee KI, Lee JC, Yang SH (2013) The optimal design of a measurement system to measure the geometric errors of linear axes. Int J Adv Manuf Technol 66:141–149. https://doi.org/10.1007/s00170-012-4312-z

    Article  Google Scholar 

  20. Lee HH, Lee DM, Yang SH (2014) A technique for accuracy improvement of squareness estimation using a double ball-bar. Meas Sci Technol 25:094009. https://doi.org/10.1088/0957-0233/25/9/094009

    Article  Google Scholar 

  21. ISO 230–4 (2005) Test code for machine tools – part 4: circular tests for numerically controlled machine tools. ISO

  22. ISO 10791–6 (2014) Test conditions for machining centres – part 6: accuracy of speeds and interpolations. ISO

  23. Tsutsumi M, Saito A (2003) Identification and compensation of systematic deviations particular to 5–axis machining centers. Int J Mach Tools Manuf 43:771–780. https://doi.org/10.1016/S0890-6955(03)00053-1

    Article  Google Scholar 

  24. Ibaraki S, Iritani T, Matsushita T (2012) Calibration of location errors of rotary axes on five–axis machine tools by on–the–machine measurement using a touch–trigger probe. Int J Mach Tools Manuf 58:44–53. https://doi.org/10.1016/j.ijmachtools.2012.03.002

    Article  Google Scholar 

  25. Weikert S (2004) R–test, a new device for accuracy measurements on five axis machine tools. CIRP Ann 53:429–432. https://doi.org/10.1016/S0007-8506(07)60732-X

    Article  Google Scholar 

  26. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geometric accuracy of five–axis machining centers based on identification and compensation of geometric deviations. Int J Mach Tools Manuf 68:11–20. https://doi.org/10.1016/j.ijmachtools.2012.12.008

    Article  Google Scholar 

  27. Matsushita T (2011) Method and program for identifying errors, United States Patent Application Publication. US 2011/0040523 A1

  28. Yang SH, Lee KI (2021) Identification of 11 position–independent geometric errors of a five–axis machine tool using 3D geometric sensitivity analysis. Int J Adv Manuf Technol 113:3271–3282. https://doi.org/10.1007/s00170-021-06844-7

    Article  Google Scholar 

  29. Mayer JRR (2012) Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Ann 61:515–518. https://doi.org/10.1016/j.cirp.2012.03.022

    Article  Google Scholar 

  30. Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five–axis machine tools. Precis Eng 34:387–398. https://doi.org/10.1016/j.precisioneng.2009.09.007

    Article  Google Scholar 

  31. Lee KI, Shin DH, Yang SH (2017) Parallelism error measurement for the spindle axis of machine tools by two circular tests with different tool lengths. Int J Adv Manuf Technol 88:2883–2887. https://doi.org/10.1007/s00170-016-8999-0

    Article  Google Scholar 

  32. Yao Y, Nishizawa K, Kato N, Tsutsumi M, Nakamoto K (2020) Identification method of geometric deviations for multi–tasking machine tools considering the squareness of translational axes. Appl Sci 10:1811. https://doi.org/10.3390/app10051811

    Article  Google Scholar 

  33. Díaz-Tena E, Ugalde U, López de Lacalle LN, de la Iglesia A, Calleja A, Campa FJ (2013) Propagation of assembly errors in multitasking machines by the homogenous matrix method. Int J Adv Manuf Technol 68:149–164. https://doi.org/10.1007/s00170-012-4715-x

    Article  Google Scholar 

  34. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematic. Int J Mach Tools Manuf 40:1199–1213. https://doi.org/10.1016/S0890-6955(99)00105-4

    Article  Google Scholar 

  35. Lamikiz A, López de Lacalle LN, Ocerin O, Díez D, Maidagan E (2007) The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five–axis milling centres. Int J Adv Manuf Technol 37:122–139. https://doi.org/10.1007/s00170-007-0956-5

    Article  Google Scholar 

  36. Tsai CY, Lin PD (2009) The mathematical models of the basic entities of multi-axis serial orthogonal machine tools using a modified Denavit–Hartenberg notation. Int J Adv Manuf Technol 42:1016–1024. https://doi.org/10.1007/s00170-008-1654-7

    Article  Google Scholar 

  37. Chen J, Lin S, He B (2014) Geometric error measurement and identification for rotary table of multi–axis machine tool using double ballbar. Int J Mach Tools Manuf 77:47–55. https://doi.org/10.1016/j.ijmachtools.2013.10.004

    Article  Google Scholar 

  38. Jiang X, Cripps RJ (2015) A method of testing position independent geometric errors in rotary axes of a five–axis machine tool using a double ball bar. Int J Mach Tools Manuf 89:151–158. https://doi.org/10.1016/j.ijmachtools.2014.10.010

    Article  Google Scholar 

  39. Lee KI, Lee JC, Yang SH (2018) Optimal on–machine measurement of position–independent geometric errors for rotary axes in five–axis machines with a universal head. Int J Precis Eng Manuf 19:545–551. https://doi.org/10.1007/s12541-018-0066-3

    Article  Google Scholar 

  40. ISO/TR 16907 (2015) Machine tools – numerical compensation of geometric errors. ISO

  41. Lee KI, Yang SH (2013) Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar. Int J Precis Eng Manuf 14:231–239. https://doi.org/10.1007/s12541-013-0032-z

    Article  Google Scholar 

  42. Marsh ER (2010) Precision spindle metrology, 2nd edn. DEStech Publications, Pennsylvania

    Google Scholar 

  43. Lee DM, Yang SH (2010) Mathematical approach and general formulation for error synthesis modeling of multi-axis system. Int J Mod Phys B 24:2737–2742. https://doi.org/10.1142/S0217979210065556

    Article  MATH  Google Scholar 

  44. ISO/IEC Guide 98–3 (2008) Uncertainty of measurement – part 3: guide to the expression of uncertainty in measurement (GUM:1995). ISO

  45. ISO 230–9 (2005) Test code for machine tools – part 9: estimation of measurement uncertainty for machine tool tests according to series ISO 230, Basic Equations. ISO

  46. Uriarte L, Herrero A, Zatarain M, Santiso G, Lopéz de Lacalle LN, Lamikiz A, Albizuri J (2007) Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter. Precis Eng 31:1–12. https://doi.org/10.1016/j.precisioneng.2005.11.010

    Article  Google Scholar 

  47. Trapet E, Martin JJ, Yague JA, Spaan H, Zelený V (2006) Self–centering probes with parallel kinematics to verify machine–tools. Precis Eng 30:165–179. https://doi.org/10.1016/j.precisioneng.2005.07.002

    Article  Google Scholar 

  48. Kenno T, Sato R, Shirase K, Natsume S, Spaan HAM (2020) Influence of linear–axis error motions on simultaneous three–axis controlled motion accuracy defined in ISO 10791–6. Precis Eng 61:110–119. https://doi.org/10.1016/j.precisioneng.2019.10.011

    Article  Google Scholar 

  49. Lee KI, Yang SH (2013) Accuracy evaluation of machine tools by modeling spherical deviation based on double ball-bar measurement. Int J Mach Tools Manuf 75:46–54. https://doi.org/10.1016/j.ijmachtools.2013.09.001

    Article  Google Scholar 

  50. Lee KI, Yang SH (2014) Circular tests for accurate performance evaluation of machine tools via an analysis of eccentricity. Int J Precis Eng Manuf 15:2499–2506. https://doi.org/10.1007/s12541-014-0620-6

    Article  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Code availability

The software used in the present study is authorized.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. 2020R1C1C100330011, 2019R1A2C2088683).

Author information

Authors and Affiliations

Authors

Contributions

S.H.Y.: methodology, resources, data curation, writing (original draft), writing (review and editing), visualization, and funding acquisition. K.I.L.: conceptualization, methodology, software, validation, writing (original draft), writing (review and editing), visualization, supervision, and funding acquisition.

Corresponding author

Correspondence to Kwang-Il Lee.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Lee, KI. Machine tool analyzer: a device for identifying 13 position-independent geometric errors for five-axis machine tools. Int J Adv Manuf Technol 115, 2945–2957 (2021). https://doi.org/10.1007/s00170-021-07341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07341-7

Keywords

Navigation