Skip to main content
Log in

The optimal design of a measurement system to measure the geometric errors of linear axes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a measurement system consisting of an L-type reference mirror and five capacitive sensors is analyzed and optimized to measure the geometric errors of linear axes more accurately. The positions of the reference coordinate system and capacitive sensors are optimized to minimize the standard uncertainty of estimated geometric errors, which is due to the standard uncertainty of the component—the L-type reference mirror and the capacitive sensors. Primarily, the flatness of the L-type reference mirror and the linearity of the capacitive sensors cause the component uncertainties. The capacitive sensors fixed on the linear axis are moved, and the L-type reference mirror is fixed on the base of the machine tool to eliminate Abbe's error, which is proportional to the command position of a linear axis. Five geometric errors of a linear axis are measured with a single setup and single measurement, simply. Finally, the optimized measurement system is applied to measure the geometric errors of linear axes X and Y of a three-axis machine tool. And the standard uncertainties of the measured geometric errors are calculated based on the specifications of the L-type reference mirror and the capacitive sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiridena VSB, Ferreira PM (1994) Kinematic modeling of quasistatic errors of three-axis machining centers. Int J Mach Tool Manuf 34(1):85–100

    Article  Google Scholar 

  2. Kiridena VSB, Ferreira PM (1994) Parameter estimation and model verification of first order quasistatic error model for three-axis machining centers. Int J Mach Tool Manuf 34(1):101–125

    Article  Google Scholar 

  3. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tool Manuf 40(9):1235–1256

    Article  Google Scholar 

  4. Yang S, Yuan J, Ni J (1996) Accuracy enhancement of a horizontal machining center by real-time error compensation. J Manuf Syst 15(2):113–124

    Article  Google Scholar 

  5. Lee DM, Zhu ZK, Lee KI, Yang SH (2011) Identification and measurement of geometric error for 5-axis machine tool with tilting head using double ball bar. Int J Precis Eng Manuf 12(2):334–343

    Google Scholar 

  6. ISO 230-1 (1996) Test code for machine tools-part 1: geometric accuracy of machines operating under no-load of finishing conditions. ISO

  7. Yang SH, Kim KH, Park YK, Lee SG (2004) Error analysis and compensation for the volumetric errors of a vertical machining centre using hemispherical helix ball bar test. Int J Adv Manuf Technol 23(7–8):495–500

    Article  Google Scholar 

  8. Suh SH, Lee JJ (1998) Five-axis part machining with three-axis CNC machine and indexing table. J Manuf Sci Eng 120(1):120–128

    Article  Google Scholar 

  9. Lee ES, Suh SH, Shon JW (1998) A comprehensive method for calibration of volumetric positioning accuracy of CNC-machines. Int J Adv Manuf Technol 14(1):43–49

    Article  Google Scholar 

  10. Lin PD, Ehmann KF (1993) Direct volumetric error evaluation for multi-axis machines. Int J Mach Tool Manuf 33(5):675–693

    Article  Google Scholar 

  11. Lamikiz A, Lopez de Lacalle LN, Ocerin O, Diez D, Maidagan E (2008) The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. Int J Adv Manuf Technol 37(1–2):122–139

    Article  Google Scholar 

  12. Lee DM, Yang SH (2010) Mathematical approach and general formulation for error synthesis modeling of multi-axis system. Int J Mod Phys B 24(15–16):2737–2742

    Article  MATH  Google Scholar 

  13. Slocum A (1992) Precision machine design. Prentice Hall, New Jersey

    Google Scholar 

  14. Hong C, Ibaraki S, Matsubara A (2011) Influence of position-dependent geometric errors of rotary axes on a machining test of con frustum by five-axis machine tools. Precis Eng 35(1):1–11

    Article  Google Scholar 

  15. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tool Manuf 40(8):1199–1213

    Article  Google Scholar 

  16. Sartori S, Zhang GX (1995) Geometric error measurement and compensation of machines. CIRP Ann Manuf Technol 44(2):599–609

    Article  Google Scholar 

  17. Schwenkw H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  18. Hai N, Yuan J, Ni J (1994) Reverse kinematic analysis of machine tool error using telescoping ball bar. ASME PED 68(1):277–286

    Google Scholar 

  19. Lee KI, Lee DM, Kweon SH, Yang SH (2010) Geometric errors estimation of a rotary table using double ball-bar. J Korean Soc Precis Eng 27(11):98–105

    Google Scholar 

  20. ISO 230-4 (2005) Test code for machine tools-part 4: circular tests for numerically controlled machine tools. ISO

  21. Khim GH, Keem TH, Lee HS, Kim SW (2005) Compensation of the straightness measurement error in the laser interferometer. J Korean Soc Precis Eng 22(9):69–76

    Google Scholar 

  22. Kim KH, Park SH, Kim DM, Jang SD (2010) Orthogonality calibration of a high precision stage using self-calibration method. J Korean Soc Precis Eng 27(3):50–57

    Google Scholar 

  23. Lee JH, Liu Y, Yang SH (2006) Accuracy improvement of miniaturized machine tool: geometric error modeling and compensation. Int J Mach Tool Manuf 46(12–13):1508–1516

    Article  Google Scholar 

  24. ISO/IEC GUIDE 98-3 (1995) Uncertainty of measurement-part 3: guide to the expression of uncertainty in measurement (GUM:1995). ISO/IEC

  25. ISO/TR 230-9 (2005) Test code for machine tools-part 9: estimation of measurement uncertainty for machine tool tests according to Series ISO 230, basic equations. ISO

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Han Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KI., Lee, JC. & Yang, SH. The optimal design of a measurement system to measure the geometric errors of linear axes. Int J Adv Manuf Technol 66, 141–149 (2013). https://doi.org/10.1007/s00170-012-4312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4312-z

Keywords

Navigation