Skip to main content
Log in

Grinding method of noncircular glass ornaments based on successive approximation and discrete cross-coupling iterative learning control

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstracts

In order to solve the problem of complicated calculation and large counter error of curve fitting method in industrial processing of noncircular glass ornaments, this paper proposes a grinding point searching algorithm. The successive approximation is used to find the grinding point of the workpiece contour and the grinding wheel. The proposed algorithm does not require complicated formula derivation and calculation and has good counter accuracy. According to the discrete characteristics of point-cloud data, a discrete cross-coupling iterative learning control algorithm is proposed to suppress the contour processing control error. Based on the norm theory, the convergence analysis and convergence conditions of the algorithm are presented. The effectiveness of the proposed algorithms is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Bourhis EL (2007) Glass: mechanics and technology. Weinheim, WileyVCH

    Book  Google Scholar 

  2. Zhong ZW, Venkatesh VC (2009) Recent developments in grinding of advanced materials. Int J Adv Manuf Technol 41(5–6):468–480

    Article  Google Scholar 

  3. Lim SH, LEE CM (2006) A study on the development of CAD/CAM system for high precision cam profile CNC grinding machine. Transactions of the Korean Society of Machine Tool Engineers 15(5):44–50 (in Korean)

    Google Scholar 

  4. Kim HS, JEONG KS, LEE GD (1995) Structural design and evaluation of the three axis ultra-precision CNC grinding machine [J]. Trans of KSME 19(12):3392–3402

    Google Scholar 

  5. Suvorov VN (1970). Automatic machinery for processing the edges of round glass articles[J]. 27(6):372-374

  6. Demirci I, Mezghani S, Mkaddem A, Mansori ME (2010) Effects of abrasive tools on surface finishing under brittle-ductile grinding regimes when manufacturing glass. J Mater Process Technol 210(3):466–473

    Article  Google Scholar 

  7. Zhong ZW, Tian YB, Xie TG (2016) Investigation of subsurface damage of ground glass edges. Int J Adv Manuf Technol 87:3261–3269. https://doi.org/10.1007/s00170-016-8733-y

    Article  Google Scholar 

  8. Sayuti M, Sarhan AAD, Fadzil M, Hamdi M (2012) Enhancement and verification of a machined surface quality for glass milling operation using CBN grinding tool-Taguchi approach. Int J Adv Manuf Technol 60(9-12):939–950

    Article  Google Scholar 

  9. Ramesh R, Mannan MA, Poo AN (2005) Tracking and contour error control in CNC servo systems. Int J Mach Tools Manuf 45(3):301–326

    Article  Google Scholar 

  10. Hu J, Shen H, Zeng S, Wang Y (2006) B-spline tool offset of a free-form curve in the shoe last high-speed machining CNC system. Int J Adv Manuf Technol 30(9-10):864–869

    Article  Google Scholar 

  11. Yeh SS, Sun HC (2009) Implementation of online NURBS curve fitting process on CNC machines. Int J Adv Manuf Technol 40(5-6):531–540

    Article  Google Scholar 

  12. Jiang H, Jiang BC, Xia L, Da-Zhu LI (2015) A B-Spline curve fitting algorithm based on contour key points. Appl Math Mech 36(4):423–431

    Google Scholar 

  13. Zhang M, Yao Z, Hu J (2010) Offset Algorithm for Non-circular Contour with Point Cloud Data. International Conference on Computer Application and System Modeling. Washington, D.C. USA: IEEE 2010(9):150–153

    Google Scholar 

  14. Huan J, Ma W (2010) Method for graphically evaluating the workpiece's contour error in non-circular grinding process. Int J Adv Manuf Technol 46(1-4):117–121

    Article  Google Scholar 

  15. Zhang BL, Cao RM, Hou ZS (2019) The model-free adaptive cross-coupled control for two-dimensional linear motor. Trans Inst Meas Control 42(5):1059–1069

    Article  Google Scholar 

  16. Wallam F, Tan CP (2019) Output feedback cross-coupled nonlinear PID based MIMO control scheme for pressurized heavy water reactor. Journal of the Franklin Institute 356(15):8012–8048

    Article  MathSciNet  Google Scholar 

  17. Tao S, Nelson CA, Justin B (2018) Design of a model-free cross-coupled controller with application to robotic NOTES. J Intell Robot Syst 95:473–489

    Google Scholar 

  18. Lu H, Fan W, Zhang Y, Ling H, Wang S, Alghannam E, Duan M (2018) Cross-coupled fuzzy logic sliding mode control of dual-driving feed system. Advances in Mechanical Engineering 10(2):168781401875551

    Article  Google Scholar 

  19. Cao Y, Zhang Z (2018). Cross-coupled repetitive control of an XY compliant nanomanipulator[C]// Chinese Control Conference

  20. Koren Y, Lo KC (1991) Variable-gain cross-coupling controller for contouring[J]. CIRP Annals- Manufacturing Technology 40(1):371–374

    Article  Google Scholar 

Download references

Funding

This study has been supported by the National Key Research and Development Project of China (Grants No. 2016YFC1400302), the National Science Foundation of China (61871163), the Zhejiang Provincial Natural Science Foundation of China (No. LQ19E070003), and Zhejiang Provincial Key Lab of Equipment Electronics.

Author information

Authors and Affiliations

Authors

Contributions

Xungen Li: conceptualization and methodology. Shuaishuai Lv: data curation, validation, and writing-original draft preparation. Mian Pan: visualization and investigation. Qi Ma: supervision. Wenyu Cai: writing-reviewing and editing. Haibin Yu: writing-reviewing and editing.

Corresponding author

Correspondence to Shuaishuai Lv.

Ethics declarations

Ethics approval

The research does not involve human participants or animals, and the authors warrant that the paper fulfills the ethical standards of the journal.

Consent to participate

It is confirmed that all the authors are aware and satisfied of the authorship order and correspondence of the paper.

Consent for publication

All the authors are satisfied that the last revised version of the paper is published without any change.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof: substitute Eq (8) into Eq. (11) to get

$$ {\displaystyle \begin{array}{c}\begin{array}{c}{u}_{k+1}(j)={u}_k(j)+{\varGamma}_d{e}_k\left(j+1\right)\\ {}+\left(\omega +\frac{1}{2\rho }{e}_k\left(j+1\right)\right){\overset{\sim }{\varGamma}}_{\varepsilon, d}\\ {}\times \left[{\omega}^T{e}_k\left(j+1\right)+\frac{1}{2\rho }{e^T}_k\left(j+1\right){e}_k\left(j+1\right)\right]\\ {}={u}_k(j)+{\varGamma}_d{e}_k\left(j+1\right)\\ {}+\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_k\left(j+1\right)+\frac{1}{2\rho }{e}_k\left(j+1\right)\\ {}\times {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_k\left(j+1\right)\\ {}+\frac{1}{2\rho}\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{e_k}^T\left(j+1\right){e}_k\left(j+1\right)\end{array}\\ {}+\frac{1}{4{\rho}^2}{e}_k\left(j+1\right){\overset{\sim }{\varGamma}}_{\varepsilon, d}{e^T}_k\left(j+1\right){e}_k\left(j+1\right)\end{array}} $$
(23)

Equation (15) can be rewritten as follows:

$$ {\displaystyle \begin{array}{c}{e}_k(j)={y}_d(j)-{y}_k(j)\\ {}={y}_d(j)-{y}_{k-1}(j)-{y}_k(j)+{y}_{k-1}(j)\\ {}={e}_{k-1}(j)-\left({y}_k(j)-{y}_{k-1}(j)\right)\\ {}={e}_{k-1}(j)-C\left({x}_k(j)-{x}_{k-1}(j)\right)\\ {}={e}_{k-1}(j)-C\Big(A{x}_k\left(j-1\right)+B{u}_k\left(j-1\right)\\ {}-A{x}_{k-1}\left(j-1\right)-B{u}_{k-1}\left(j-1\right)\Big)\\ {}={e}_{k-1}(j)- CA\left({x}_k\left(j-1\right)-{x}_{k-1}\left(j-1\right)\right)\\ {}- CB\left({u}_k\left(j-1\right)-{u}_{k-1}\left(j-1\right)\right)\\ {}={e}_{k-1}(j)- CB{\varGamma}_d{e}_{k-1}(j)\\ {}- CA\left({x}_k\left(j-1\right)-{x}_{k-1}\left(j-1\right)\right)\\ {}- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_{k-1}(j)\\ {}-\frac{1}{2\rho } CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_{k-1}(j)\\ {}-\frac{1}{2\rho } CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{e_{k-1}}^T(j){e}_{k-1}(j)\\ {}-\frac{1}{4{\rho}^2} CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{e^T}_{k-1}(j){e}_{k-1}(j)\end{array}} $$
(24)

Reorganize Eq. (24) to get

$$ {\displaystyle \begin{array}{c}\kern0.24em {e}_k(j)\\ {}=\left(I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right){e}_{k-1}(j)\\ {}- CA\left({x}_k\left(j-1\right)-{x}_{k-1}\left(j-1\right)\right)\\ {}-\frac{1}{2\rho } CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_{k-1}(j)\\ {}-\frac{1}{2\rho } CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{e_{k-1}}^T(j){e}_{k-1}(j)\\ {}-\frac{1}{4{\rho}^2} CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{e^T}_{k-1}(j){e}_{k-1}(j)\end{array}} $$
(25)

For any given control input uk(j),j ∈ [0, N], the general solution xk(j) to the traffic system

$$ {x}_k(j)={A}^j{x}_k(0)+\sum \limits_{i=0}^{j-1}{A}^{j-i-1}{Bu}_k(i) $$
(26)

can get

$$ {\displaystyle \begin{array}{c}{x}_k\left(j-1\right)-{x}_{k-1}\left(j-1\right)\\ {}=\sum \limits_{i=0}^{j-2}{A}^{j-i-2}B\left({u}_k\left(i-1\right)-{u}_{k-1}\left(i-1\right)\right)\\ {}\sum \limits_{i=0}^{j-2}{A}^{j-i-2}B\Big({\varGamma}_d{e}_{k-1}(i)\\ {}+\tau \left(i+1\right){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\varepsilon}_{k-1}(i)\Big)\\ {}\kern1em =\sum \limits_{i=0}^{j-2}{A}^{j-i-2}B{\varGamma}_d{e}_{k-1}(i)\\ {}+\sum \limits_{i=0}^{j-2}{A}^{j-i-2} B\tau (i){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\varepsilon}_{k-1}(i)\Big)\end{array}} $$
(27)
$$ {\displaystyle \begin{array}{c}{e}_k(j)=\left(I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right){e}_{k-1}(j)\\ {}- CA\sum \limits_{i=0}^{j-2}{A}^{j-i-2}B{\varGamma}_d{e}_{k-1}(i)\\ {}\kern0.84em - CA\sum \limits_{i=0}^{j-2}{A}^{j-i-2} B\tau (i){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\varepsilon}_{k-1}(i)\\ {}\kern0.96em -\frac{1}{2\rho } CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T{e}_{k-1}(j)\\ {}\kern0.96em -\frac{1}{2\rho } CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{e_{k-1}}^T(j){e}_{k-1}(j)\\ {}\kern0.84em -\frac{1}{4{\rho}^2} CB{e}_{k-1}(j){\overset{\sim }{\varGamma}}_{\varepsilon, d}{e^T}_{k-1}(j){e}_{k-1}(j)\end{array}} $$
(28)

Take the norm on both ends of (28) to get

$$ {\displaystyle \begin{array}{c}\begin{array}{c}\kern0.36em \left\Vert {e}_k(j)\right\Vert \\ {}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\left\Vert CA\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert {A}^{j-i-2}\right\Vert \left\Vert B{\varGamma}_d\right\Vert \left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\left\Vert CA\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert {A}^{j-i-2}\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert \tau (i)\right\Vert \left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e_{k-1}}^T(j){e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e^T}_{k-1}(j){e}_{k-1}(j)\right\Vert \end{array}\\ {}\begin{array}{c}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert \tau (i)\right\Vert \left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e_{k-1}}^T(j){e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e^T}_{k-1}(j){e}_{k-1}(j)\right\Vert \end{array}\end{array}} $$
(29)

Define κ ≔ max {‖Aj − i − 2‖, j ∈ [0, N], i ∈ [0, j − 2]}, Eq. (29) can be sorted out.

$$ {\displaystyle \begin{array}{c}\begin{array}{c}\kern0.36em \left\Vert {e}_k(j)\right\Vert \\ {}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert \tau (i)\right\Vert \left\Vert {e}_{k-1}(i)\right\Vert \end{array}\\ {}\begin{array}{c}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e_{k-1}}^T(j)\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e_{k-1}}^T(j)\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \sum \limits_{i=0}^{j-2}\left\Vert \tau (i)\right\Vert \left\Vert {e}_{k-1}(i)\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert CB\right\Vert \left\Vert {e}_{k-1}(j)\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \end{array}\end{array}} $$
(30)

By multiplying both sides of (30) by aλj and making use of some trivial manipulations, we can obtain that for any j ∈ [0, N], what we can obtain after finishing is

$$ {\displaystyle \begin{array}{c}\begin{array}{c}\;{\left\Vert {e}_k(j)\right\Vert}_{\lambda}\\ {}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert {\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert {u}_k\sum \limits_{i=0}^{j-2}{a}^{-\lambda \left(j-i\right)}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert {v}_k\sum \limits_{i=0}^{j-2}{a}^{-2\lambda \left(j-i\right)}\\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert {\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}+\frac{1}{2\rho}\left\Vert CB\right\Vert \left\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert {\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}+\frac{1}{4{\rho}^2}\left\Vert CB\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert {\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}\le \left\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert {\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert {u}_k\frac{a^{-\lambda}\left(1-{a}^{-\lambda \left(j-1\right)}\right)}{1-{a}^{-\lambda }}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert {v}_k\frac{a^{-2\lambda}\left(1-{a}^{-2\lambda \left(j-1\right)}\right)}{1-{a}^{-2\lambda }}\\ {}+\left\Vert CB\right\Vert \left(\frac{1}{2\rho}\right\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\left\Vert +\frac{1}{2\rho}\right\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\Big\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \Big){\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\end{array}\\ {}\begin{array}{c}=\left(\right\Vert I- CB{\varGamma}_d- CB\omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\Big\Vert \\ {}+\left\Vert CB\right\Vert \left(\frac{1}{2\rho}\right\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}{\omega}^T\left\Vert +\frac{1}{2\rho}\right\Vert \omega {\overset{\sim }{\varGamma}}_{\varepsilon, d}\Big\Vert \\ {}+\frac{1}{4{\rho}^2}\left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert \left)\right){\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B{\varGamma}_d\right\Vert {u}_k\frac{a^{-\lambda}\left(1-{a}^{-\lambda \left(j-1\right)}\right)}{1-{a}^{-\lambda }}\\ {}+\kappa \left\Vert CA\right\Vert \left\Vert B\right\Vert \left\Vert {\overset{\sim }{\varGamma}}_{\varepsilon, d}\right\Vert {v}_k\frac{a^{-2\lambda}\left(1-{a}^{-2\lambda \left(j-1\right)}\right)}{1-{a}^{-2\lambda }}\end{array}\end{array}} $$
(31)

where uk = max {‖ek − 1(i)‖λi ∈ [0, j − 2]},vk = max {‖τ(i)‖λek − 1(i)‖λi ∈ [0, j − 2]}.

By virtue of the contractive condition of (22),

\( {\displaystyle \begin{array}{l}\left\Vert \boldsymbol{I}-\boldsymbol{CB}{\varGamma}_d-\boldsymbol{CB}\omega {\tilde{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \\ {}+\left\Vert \boldsymbol{CB}\right\Vert \left(\frac{1}{2\rho}\left\Vert {\tilde{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert +\frac{1}{2\rho}\left\Vert \omega {\tilde{\varGamma}}_{\varepsilon, d}\right\Vert +\frac{1}{4{\rho}^2}\left\Vert {\tilde{\varGamma}}_{\varepsilon, d}\right\Vert \right)<1\end{array}} \) with a sufficiently large λ, we can obtain

$$ {\displaystyle \begin{array}{l}{\left\Vert {\boldsymbol{e}}_k(j)\right\Vert}_{\lambda}\le \Big(\left\Vert \boldsymbol{I}-\boldsymbol{CB}{\varGamma}_d-\boldsymbol{CB}\omega {\tilde{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert \\ {}+\left\Vert \boldsymbol{CB}\right\Vert \left(\frac{1}{2\rho}\left\Vert {\tilde{\varGamma}}_{\varepsilon, d}{\omega}^T\right\Vert +\frac{1}{2\rho}\left\Vert \omega {\tilde{\varGamma}}_{\varepsilon, d}\right\Vert +\frac{1}{4{\rho}^2}\left\Vert {\tilde{\varGamma}}_{\varepsilon, d}\right\Vert \right)\Big){\left\Vert {e}_{k-1}(j)\right\Vert}_{\lambda}\end{array}} $$
(32)

Taking limit as k → ∞, we have \( \underset{k\to \infty }{\lim }{\left\Vert {\boldsymbol{e}}_k(j)\right\Vert}_{\lambda }=0 \), and based on Eq. (18), we can obtain \( \underset{k\to \infty }{\lim }{\left\Vert {\varepsilon}_k(j)\right\Vert}_{\lambda }=0 \).

That is, as the number of iterations increases, the single-axis error and contour error both tend to 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lv, S., Pan, M. et al. Grinding method of noncircular glass ornaments based on successive approximation and discrete cross-coupling iterative learning control. Int J Adv Manuf Technol 114, 3823–3835 (2021). https://doi.org/10.1007/s00170-021-07076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07076-5

Keywords

Navigation