Skip to main content
Log in

A comprehensive review on pre- and post-forming evaluation of aluminum to steel blanks via friction stir welding

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tailored blanks of aluminum and steel have increasing applications in recent years. In less critical section of a parts where it is not necessary to use high strength steel but requires lightweight, aluminum provides a reliable substitute. As a promising alternative to join aluminum and steel, friction stir welding has been studied extensively. This review paper emphasizes on the evaluation of pre- and post-forming of friction stir welded blanks and manufacturability issues during metal forming. Upon selection of appropriate parameters to obtain a successful weld, quality and performance are reviewed. The necessity and effect of post-welding heat treatment on heat treatable and non-heat treatable weld joint are discussed. Following, evaluations of pre and post-forming are presented, including mechanical and microstructure characterization as well as formability of the joint using limiting dome height test and springback via v-bending and twist forming. This article concludes important aspects in heat treatment and forming of friction stir welded aluminum and steel blanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable

References

  1. Devanathan C, Babu AS. Effect of Plunge Depth on Friction Stir Welding of Al 6063. 2nd Int Conf Adv Manuf Autom. 2013;(November):482–5. http://www.scopus.com/inward/record.url?eid=2-s2.0-84887219505&partnerID=40&md5=1b2b99a2ecd377f9829460d7f984f4a8

  2. Salih OS, Ou H, Sun W, McCartney DG (2015) A review of friction stir welding of aluminium matrix composites. Mater Des 86:61–71. https://doi.org/10.1016/j.matdes.2015.07.071

    Article  Google Scholar 

  3. Ambroziak A, Korzeniowski M, Kustroń P, Winnicki M, Sokołowski P, Harapińska E (2014) Friction welding of aluminium and aluminium alloys with steel. Adv Mater Sci Eng 2014:1–15

    Article  Google Scholar 

  4. Mistry HJ, Marathe SP (2016) A Review paper on Friction Stir Welding (FSW). Int J Adv Res Eng Sci Manag 2

  5. Gullino A, Matteis P, Aiuto FD (2019) Review of aluminum-to-steel welding technologies for car-body applications. Metals (Basel) 9(3):1–28

    Article  Google Scholar 

  6. Mishra R, De P, Kumar N. Friction Stir Welding and Processing: Science and Engineering. Friction Stir Welding and Processing: Science and Engineering. 2014.

  7. Dixit US (2020) Modeling of metal forming: a review. Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques. LTD:1–30. https://doi.org/10.1016/B978-0-12-818232-1.00001-1

  8. Saquib AN, Khaleed HMT, Badruddin IA, Algahtani A, Addas MF, Abdullah AB, Abdulgaphur A, Kamangar S, Khan TMY (2019) Development of Preform for Simulation of Cold Forging Process of a V8 Engine Camshaft Free From Flash & Under-filling. Mathematics 7(11). https://doi.org/10.3390/math7111026

  9. Shahriyar MH. Prospect of Friction Stir Welding in Automobile TWB Production as Alternative of Laser Welding, Master Thesis, Blekinge Institute of Technology, School of Engineering, Sweden. 2020.

  10. Tanaka T, Hirata T, Shinomiya N, Shirakawa N (2015) Analysis of material flow in the sheet forming of friction-stir welds on alloys of mild steel and aluminum. J Mater Process Tech 226:115–124. https://doi.org/10.1016/j.jmatprotec.2015.06.030

    Article  Google Scholar 

  11. Srivastava BK, Tewari SP, Prakash J (2015) A Review On Effect Of Preheating and/or Post Weld Heat Treatment (PWHT) On Mechanical Behaviour Of Ferrous Metals. Int J Res Eng Technol 04(03):574–580

    Article  Google Scholar 

  12. Ramachandran KK, Murugan N, Kumar SS (2015) Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater Sci Eng A 639:219–233. https://doi.org/10.1016/j.msea.2015.04.089

    Article  Google Scholar 

  13. Tisza M, Czinege I (2018) Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int J Light Mater Manuf 1(4):229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001

    Article  Google Scholar 

  14. Tariq M, Khan I, Hussain G, Farooq U (2019) Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. Int J Light Mater Manuf 2(2):123–130. https://doi.org/10.1016/j.ijlmm.2019.04.010

    Article  Google Scholar 

  15. Arya PK, Gupta G, Rajput AK (2016) A Review on Friction Stir Welding for Aluminium Alloy to Steel. Int J Sci Eng Res 7(5):119–125

    Google Scholar 

  16. Corigliano P, Crupi V, Guglielmino E, Mariano SA (2018) Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Mar Struct 57(September 2017):207–218. https://doi.org/10.1016/j.marstruc.2017.10.004

    Article  Google Scholar 

  17. Raja S, Hasan F, Ansari AH. Effect of Friction Stir Welding on the hardness of Al-6061 T6 aluminium alloy. Int Conf Adv Prod Ind Eng 9-10 December, 2016. 2016;(August 2017):9–13.

  18. Noh W, Song JH, Jang IJ, Gwak SH, Kim C, Jung CY (2018) Numerical and experimental investigation for formability of friction stir welded dissimilar aluminum alloys. IOP Conf Ser Mater Sci Eng 418(1):0–6

    Google Scholar 

  19. Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91(5–8):1851–1866

    Article  Google Scholar 

  20. Geng P (2019) hao, Qin G liang, Zhou J, Li C an. Parametric optimization and microstructural characterization of friction welded aeronautic aluminum alloy 2024. Trans Nonferrous Met Soc China 29(12):2483–2495. https://doi.org/10.1016/S1003-6326(19)65156-3

    Article  Google Scholar 

  21. Wang Y, Qi B, Cong B, Yang M, Liu F (2017) Arc characteristics in double-pulsed VP-GTAW for aluminum alloy. J Mater Process Technol 249(May):89–95

    Article  Google Scholar 

  22. Safeen MW, Spena PR (2019) Main issues in quality of friction stir welding joints of aluminum alloy and steel sheets. Metals (Basel) 9(5)

  23. Kalemba-Rec I, Kopyściański M, Miara D, Krasnowski K (2018) Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys. Int J Adv Manuf Technol 97(5–8):2767–2779

    Article  Google Scholar 

  24. Bang HS, Hong SM, Das A, Bang HS (2020) A prediction of Fe-Al IMC layer thickness in TIG-assisted hybrid friction stir welded Al/steel dissimilar joints by numerical analysis. Int J Adv Manuf Technol 106(1–2):765–778

    Article  Google Scholar 

  25. Thomä M, Gester A, Wagner G, Fritzsche M (2020) Analysis of the oscillation behavior of hybrid aluminum/steel joints realized by ultrasound enhanced friction stir welding. Metals (Basel) 10(8):1–12

    Article  Google Scholar 

  26. Lyu X, Li M, Li X, Chen J (2018) Double-sided friction stir spot welding of steel and aluminum alloy sheets. Int J Adv Manuf Technol 96(5–8):2875–2884

    Article  Google Scholar 

  27. Fei X, Jin X, Ye Y, Xiu T, Yang H (2016) Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys. Mater Sci Eng A 653:43–52. https://doi.org/10.1016/j.msea.2015.11.101

    Article  Google Scholar 

  28. Ibrahim AB, Al-Badour FA, Adesina AY, Merah N (2018) Effect of process parameters on microstructural and mechanical properties of friction stir diffusion cladded ASTM A516-70 steel using 5052 Al alloy. J Manuf Process 34(February):451–462. https://doi.org/10.1016/j.jmapro.2018.06.020

    Article  Google Scholar 

  29. Aval HJ, Loureiro A (2019) Effect of reverse dual rotation process on properties of friction stir welding of AA7075 to AISI304. Trans Nonferrous Met Soc China (English Ed 29(5):964–975. https://doi.org/10.1016/S1003-6326(19)65005-3

    Article  Google Scholar 

  30. Wang T, Sidhar H, Mishra RS, Hovanski Y, Upadhyay P, Carlson B (2019) Evaluation of intermetallic compound layer at aluminum / steel interface joined by friction stir scribe technology. Mater Des 174:107795. https://doi.org/10.1016/j.matdes.2019.107795

    Article  Google Scholar 

  31. Yasui T, Wu-Bian T, Hanai A, Mori T, Hirosawa K, Fukumoto M (2018) Friction stir girth welding between aluminum and steel rods. Procedia Manuf 15:1376–1381. https://doi.org/10.1016/j.promfg.2018.07.345

    Article  Google Scholar 

  32. Chen K, Liu X, Ni J (2017) Keyhole refilled friction stir spot welding of aluminum alloy to advanced high strength steel. J Mater Process Technol 249(March):452–462. https://doi.org/10.1016/j.jmatprotec.2017.06.039

    Article  Google Scholar 

  33. Derazkola HA, Eyvazian A, Simchi A (2020) Submerged friction stir welding of dissimilar joints between an Al-Mg alloy and low carbon steel: Thermo-mechanical modeling, microstructural features, and mechanical properties. J Manuf Process 50(November 2019):68–79. https://doi.org/10.1016/j.jmapro.2019.12.035

  34. Boumerzoug Z, Helal Y (2017) Friction stir welding of dissimilar materials aluminum AL6061-T6 to ultra low carbon steel. Metals (Basel) 7(2)

  35. Dehghani M, Amadeh A, Akbari Mousavi SAA (2013) Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater Des 49:433–441. https://doi.org/10.1016/j.matdes.2013.01.013

    Article  Google Scholar 

  36. Pasha A, Reddy RP, Ahmad KI (2014) Influence of Process and Tool Parameters on Friction Stir Welding – Over View. Int J Appl Eng Technol 4(3):2277–2212

    Google Scholar 

  37. Campanella D, Spena PR, Buffa G, Fratini L (2016) Dissimilar Al/steel friction stir welding lap joints for automotive applications. AIP Conf Proc 1769

  38. Zheng Q, Feng X, Shen Y, Huang G, Zhao P (2016) Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal. J Alloys Compd 686:693–701. https://doi.org/10.1016/j.jallcom.2016.06.092

    Article  Google Scholar 

  39. Safeen MW, Russo Spena P, Buffa G, Campanella D, Masnata A, Fratini L (2020) Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications. Adv Manuf 8(1):59–71. https://doi.org/10.1007/s40436-019-00290-1

    Article  Google Scholar 

  40. Picot F, Gueydan A, Martinez M, Moisy F, Hug E (2018) A correlation between the ultimate shear stress and the thickness affected by intermetallic compounds in friction stir welding of dissimilar aluminum alloy–stainless steel joints. Metals (Basel) 8(3)

  41. Desai NV, Inamdar KH (2017) A Methodology for Friction Stir Welding of Aluminium 6061-T6 and 304L Stainless Steel. Int J Innov Res Sci Eng Technol 6(12):22647–22652

    Google Scholar 

  42. Mahto RP, Bhoje R, Pal SK, Joshi HS, Das S (2016) A study on mechanical properties in friction stir lap welding of AA 6061-T6 and AISI 304. Mater Sci Eng A 652:136–144. https://doi.org/10.1016/j.msea.2015.11.064

    Article  Google Scholar 

  43. Leitao C, Arruti E, Aldanondo E, Rodrigues DM (2016) Aluminium-steel lap joining by multipass friction stir welding. Mater Des 106:153–160. https://doi.org/10.1016/j.matdes.2016.05.101

    Article  Google Scholar 

  44. Fereiduni E, Movahedi M, Kokabi AH (2015) Aluminum/steel joints made by an alternative friction stir spot welding process. J Mater Process Technol 224:1–10. https://doi.org/10.1016/j.jmatprotec.2015.04.028

    Article  Google Scholar 

  45. Balamagendiravarman M, Kundu S, Chatterjee S (2017) An analysis of microstructure and mechanical properties on friction stir welded joint of dissimilar 304 stainless steel and commercially pure aluminium. Arch Metall Mater 62(3):1813–1817

    Article  Google Scholar 

  46. Grong Ø, Sandnes L, Bergh T, Vullum PE, Holmestad R, Berto F (2019) An analytical framework for modelling intermetallic compound ( IMC ) formation and optimising bond strength in aluminium-steel welds. Mater Des Process Commun 1(3):e57

    Article  Google Scholar 

  47. Derazkola HA, Aval HJ, Elyasi M (2015) Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Sci Technol Weld Join 20(7):553–562

    Article  Google Scholar 

  48. Fallahi AA, Shokuhfar A, Ostovari Moghaddam A, Abdolahzadeh A (2017) Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel. J Manuf Process 30:418–430. https://doi.org/10.1016/j.jmapro.2017.09.027

    Article  Google Scholar 

  49. Zhang ZK, Yu Y, Zhang JF, Wang XJ (2017) Corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminum alloy and DP600 galvanized Steel in 3.5% NaCl solution. Metals (Basel) 7(9)

  50. Seo B, Song KH, Park K (2018) Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel. Met Mater Int 24(6):1232–1240. https://doi.org/10.1007/s12540-018-0135-2

    Article  Google Scholar 

  51. Fereiduni E, Movahedi M, Kokabi AH (2016) Dissimilar Al/steel friction stir spot welding: To penetrate into the lower steel sheet or not? Sci Technol Weld Join 21(6):466–472

    Article  Google Scholar 

  52. Yazdipour A, Heidarzadeh A (2016) Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int J Adv Manuf Technol 87(9–12):3105–3112. https://doi.org/10.1007/s00170-016-8705-2

    Article  Google Scholar 

  53. Helal Y, Boumerzoug Z (2016) Dissimilar friction stir welding of Al-6061 to steel. AIP Conf Proc 1772(October 2016)

  54. Zandsalimi S, Heidarzadeh A, Saeid T (2019) Dissimilar friction-stir welding of 430 stainless steel and 6061 aluminum alloy: Microstructure and mechanical properties of the joints. Proc Inst Mech Eng Part L J Mater Des Appl 233(9):1791–1801

    Google Scholar 

  55. Wang T, Sidhar H, Mishra RS, Hovanski Y, Upadhyay P, Carlson B (2019) Effect of hook characteristics on the fracture behaviour of dissimilar friction stir welded aluminium alloy and mild steel sheets. Sci Technol Weld Join 24(2):178–184. https://doi.org/10.1080/13621718.2018.1503801

    Article  Google Scholar 

  56. Piccini JM, Svoboda HG (2015) Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-steel joints. Procedia Mater Sci 9:504–513. https://doi.org/10.1016/j.mspro.2015.05.023

    Article  Google Scholar 

  57. Barbini A, Carstensen J, Dos Santos JF (2018) Influence of alloys position, rolling and welding directions on properties of AA2024/AA7050 dissimilar butt weld obtained by friction stirwelding. Metals (Basel) 8(4)

  58. Thomä M, Gester A, Wagner G, Straß B, Wolter B, Benfer S, Gowda DK, Fürbeth W (2019) Application of the hybrid process ultrasound enhanced friction stir welding on dissimilar aluminum/dual-phase steel and aluminum/magnesium joints. Materwiss Werksttech 50(8):893–912

    Article  Google Scholar 

  59. Kimura M, Sakino S, Kusaka M, Kaizu K, Hayashida K (2020) Characteristics of friction welded joint between 6063 aluminum alloy and AISI 304 stainless steel through post-weld heat treatment. J Manuf Process 58(August):302–310. https://doi.org/10.1016/j.jmapro.2020.08.003

    Article  Google Scholar 

  60. Jannet S, Mathews K, Raja R (2014) Comparative investigation of friction stir welding and fusion welding of 6061 T6 - 5083 O aluminum alloy based on mechanical properties and microstructure. Bull Polish Acad Sci Tech Sci 62(4):791–795

    Google Scholar 

  61. El-Danaf EA, El Rayes MM (2015) Post weld treatment of dissimilar friction stir welded-aluminum alloys 5754–6082. Mater Characterisation VII 1(April):25–35

    Google Scholar 

  62. Movahedi M, Kokabi AH, Seyed Reihani SM, Cheng WJ, Wang CJ (2013) Effect of annealing treatment on joint strength of aluminum/steel friction stir lap weld. Mater Des 44:487–492. https://doi.org/10.1016/j.matdes.2012.08.028

    Article  Google Scholar 

  63. Naumov A, Mertin C, Korte F, Hirt G, Reisgen U (2017) On the growth of intermetallic phases by heat treatment of friction stir welded aluminum steel joints. Prod Eng 11(2):175–182

    Article  Google Scholar 

  64. Juárez JCV, Hernández RG, Almaraz GMD, Gómez EC, López JJV (2020) Effect of pre and post weld heat treatment on the mechanical properties of friction stir welded AA6061-T6 joint. Int J Automot Mech Eng 17(2):7882–7889

    Article  Google Scholar 

  65. Mithun K, Saraswathamma K, Verma DK (2019) Effect of post weld heat treatment soaking time on microstructure and mechanical properties of TIG welded grade 91 steel. J Met Mater Miner 29(2):42–50

    Google Scholar 

  66. Gonzaga AC, Barbosa C, Tavares SSM, Zeemann A, Payaõ JC (2020) Influence of post welding heat treatments on sensitization of AISI 347 stainless steel welded joints. J Mater Res Technol 9(1):908–921. https://doi.org/10.1016/j.jmrt.2019.11.031

    Article  Google Scholar 

  67. Li X, Li J, Liao Z, Jin F, Zhang F, Xiong J (2016) Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds. Mater Des 99:26–36

    Article  Google Scholar 

  68. Commin L, Dumont M, Masse JE, Barrallier L (2009) Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters. Acta Mater 57(2):326–334. https://doi.org/10.1016/j.actamat.2008.09.011

    Article  Google Scholar 

  69. Avula D, Dwivedi DK (2018) Effect of Welding Speed on Mechanical Properties of Friction Stir Welded AA 6082-T6 Al Alloy. Appl Mech Mater 877:98–103

    Article  Google Scholar 

  70. Pauzi AF, Abdullah AB, Jamaludin MF (2019) Pre-forming evaluation of dissimilar aluminium alloys blank fabricated using friction stir welding technique. IOP Conf Ser Mater Sci Eng 670(1)

  71. Lin B-Y, Yuan P, Liu J (2011) Temperature Distribution of Aluminum Alloys under Friction Stir Welding. Adv Mater Res 264(265):217–222

    Article  Google Scholar 

  72. Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183. https://doi.org/10.1016/j.msea.2012.06.076

    Article  Google Scholar 

  73. Niu PL, Li WY, Chen DL (2018) Strain hardening behavior and mechanisms of friction stir welded dissimilar joints of aluminum alloys. Mater Lett 231:68–71

    Article  Google Scholar 

  74. Dialami N, Cervera M, Chiumenti M (2018) Numerical modelling of microstructure evolution in friction stir welding (FSW). Metals (Basel) 8(3)

  75. Patel VV, Badheka V, Kumar A (2015) Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy. Mater Manuf Process 31(12):1573–1582

    Article  Google Scholar 

  76. Ugender S, Kumar A, Reddy AS (2014) Experimental Investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA 2014 Aluminium Alloy. Procedia Mater Sci 5:824–831

    Article  Google Scholar 

  77. Saeidi M, Manafi B, Besharati Givi MK, Faraji G (2016) Mathematical modeling and optimization of friction stir welding process parameters in AA5083 and AA7075 aluminum alloy joints. Proc Inst Mech Eng Part B J Eng Manuf 230(7):1284–1294

    Article  Google Scholar 

  78. Ghosh M, Husain MM, Kumar K, Kailas SV (2013) Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State. J Mater Eng Perform 22(12):3890–3901. https://doi.org/10.1007/s11665-013-0663-3

    Article  Google Scholar 

  79. Pavan Kumar J, Uday Kumar R, Ramakrishna B, Ramu B, Baba Saheb K. Formability of sheet metals - A review. Vol. 455, IOP Conference Series: Materials Science and Engineering. 2018.

  80. Sadoun AM, Meselhy AF, Deabs AW (2020) Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075. Results Phys 16(January):102911. https://doi.org/10.1016/j.rinp.2019.102911

    Article  Google Scholar 

  81. Merklein M, Johannes M, Lechner M, Kuppert A (2014) A review on tailored blanks - Production, applications and evaluation. J Mater Process Technol 214(2):151–164. https://doi.org/10.1016/j.jmatprotec.2013.08.015

    Article  Google Scholar 

  82. Zhang S, Hu X, Niu C, Misra RDK, Yan S, Liu X (2020) Annealing of HC340LA tailor rolled blanks—Control of mechanical properties and formability. J Mater Process Technol 281(June 2019):116581. https://doi.org/10.1016/j.jmatprotec.2019.116581

    Article  Google Scholar 

  83. Habibi M, Hashemi R, Fallah Tafti M, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323. https://doi.org/10.1016/j.jmapro.2017.11.009

    Article  Google Scholar 

  84. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149(January):106669. https://doi.org/10.1016/j.tws.2020.106669

    Article  Google Scholar 

  85. Adnan AF, Abdullah AB, Samad Z (2017) Study of springback pattern of non-uniform thickness section based on V-bending experiment. J Mech Eng Sci 11(3):2845–2855

    Article  Google Scholar 

  86. Nashrudin MN, Abdullah AB (2016) Finite element simulation of twist forming process to study twist springback pattern. MATEC Web Conf 90

  87. Abdullah AB, Samad Z (2014) Measurement of Twist Springback on AA6061-T6 Aluminum Alloy Strip - A Preliminary Result. Appl Mech Mater 699:44–48

    Article  Google Scholar 

  88. Srinivasu C, Singh SK, Jella G, Jayahari L, Kotkunde N (2017) Study of Limiting Dome Height and Temperature Distribution in Warm Forming of ASS304 Using Finite Element Analysis. Mater Today Proc 4(2):957–965

    Article  Google Scholar 

  89. Panich S, Uthaisangsuk V (2011) Determination of forming limit stress diagram for formability prediction of SPCE 270 steel sheet. J Met Mater 21(1):19–27 http://www.material.chula.ac.th/Journal/v21-1/19-27 PANICH.pdf

    Google Scholar 

  90. Ghafar AA, Abdullah AB, Mahmood JI (2021. In Press) Experimental and Numerical Prediction on Square Cup Punch–Die Misalignment During the Deep Drawing Process. Int J Adv Manuf Technol 113:379–388. https://doi.org/10.1007/s00170-021-06595-5

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support from Universiti Sains Malaysia (USM) thru RUI Grant (1001/PMEKANIK/8014031).

Funding

Universiti Sains Malaysia (USM) thru RUI Grant (1001/PMEKANIK/8014031).

Author information

Authors and Affiliations

Authors

Contributions

MZ Rizlan is the main author and contributes in drafting the article, and A. B. Abdullah and Z Hussain contribute in editing the article and act as supervisor for the MZ Rizlan.

Corresponding author

Correspondence to Ahmad Baharuddin Abdullah.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizlan, M.Z., Abdullah, A.B. & Hussain, Z. A comprehensive review on pre- and post-forming evaluation of aluminum to steel blanks via friction stir welding. Int J Adv Manuf Technol 114, 1871–1892 (2021). https://doi.org/10.1007/s00170-021-06963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06963-1

Keywords

Navigation