Skip to main content
Log in

Grinding mechanism of high-temperature nickel-based alloy using FEM-FBM technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The models, simulation, and validation were presented during the last decade over various moving particle investigations with thermal convection and disclosed the challenges as well. The present work provides the simulation and validation of the grinding mechanism of high-temperature nickel-based alloy with single abrasive grain. Several nickel-based alloys provide better performances for temperatures above 1000 °C and those suited for extremely difficult conditions as well. In this study, we simulate and analyze the grinding mechanism of high-temperature nickel-based alloy using single abrasive grain cutting. Using a grinding, it introduces variation in friction coefficient as per the variations of the grinding parameters. The grinding force system of single abrasive grain is designed and simulated to investigate high-temperature nickel-based alloy using various grinding conditions like particle settling modes such as rolling, horizontal, and vertical with thermal convection. The multi-grid finite element fictitious boundary method (FEM-FBM) is used to simulate and study the grinding mechanism of high-temperature nickel-based alloy in terms of fluid-particle sedimentations. The material used for this simulation study is Inconel 718 alloy. The simulation results investigate the various grinding force conditions of high-temperature nickel-based 718 alloys using the dimensional physical parameters and numbers such as Prandtl number and Grashof number. Finally, the simulation results were validated with a conventional FEM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Feng J, Huang PY, Joseph DD (1995) Dynamic simulation of the motion of capsules in pipelines. J Fluid Mech 286(1):201. https://doi.org/10.1017/s002211209500070x

    Article  MathSciNet  MATH  Google Scholar 

  2. Feng J, Joseph DD (1995) The unsteady motion of solid bodies in creeping flows. J Fluid Mech 303(1):83. https://doi.org/10.1017/s0022112095004186

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J Fluid Mech 261(1):95. https://doi.org/10.1017/s0022112094000285

    Article  MATH  Google Scholar 

  4. Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J Fluid Mech 277(1):271. https://doi.org/10.1017/s0022112094002764

    Article  MATH  Google Scholar 

  5. Feng Z-G, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J Comput Phys 195(2):602–628. https://doi.org/10.1016/j.jcp.2003.10.013

    Article  MATH  Google Scholar 

  6. Hu HH, Joseph DD, Crochet MJ (1992) Direct simulation of fluid particle motions. Theor Comput Fluid Dyn 3(5):285–306. https://doi.org/10.1007/bf00717645

    Article  MATH  Google Scholar 

  7. Huang PY, Feng J, Joseph DD (1994) The turning couples on an elliptic particle settling in a vertical channel. J Fluid Mech 271:1–16. https://doi.org/10.1017/s0022112094001667

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang PY, Hu HH, Joseph DD (1998) Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids. J Fluid Mech 362:297–326. https://doi.org/10.1017/s0022112098008672

    Article  MathSciNet  MATH  Google Scholar 

  9. Prosperetti A, Og̃uz HN (2001) Physalis: a new o(N) method for the numerical simulation of disperse systems: potential flow of spheres. J Comput Phys 167(1):196–216. https://doi.org/10.1006/jcph.2000.6667

    Article  MathSciNet  MATH  Google Scholar 

  10. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476. https://doi.org/10.1016/j.jcp.2005.03.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Lai M-C, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719. https://doi.org/10.1006/jcph.2000.6483

    Article  MathSciNet  MATH  Google Scholar 

  12. Mo H, Lien F-S, Zhang F, Cronin DS (2018) An immersed boundary method for solving compressible flow with arbitrarily irregular and moving geometry. Int J Numer Methods Fluids 88:239–263. https://doi.org/10.1002/fld.4665

    Article  MathSciNet  Google Scholar 

  13. Haeri S, Shrimpton JS (2013) A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer. J Comput Phys 237:21–45. https://doi.org/10.1016/j.jcp.2012.11.050

    Article  MathSciNet  MATH  Google Scholar 

  14. Turek S, Wan D, Rivkind LS (2003) The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations. In: Bänsch E (ed) Challenges in scientific computing - CISC 2002. Lecture Notes in Computational Science and Engineering, vol 35. Springer, Berlin. https://doi.org/10.1007/978-3-642-19014-8_3

    Chapter  Google Scholar 

  15. Wan D, Turek S (2006) Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int J Numer Methods Fluids 51(5):531–566. https://doi.org/10.1002/fld.1129

    Article  MathSciNet  MATH  Google Scholar 

  16. Wan D, Turek S, Rivkind LS (2004) An efficient multigrid FEM solution technique for incompressible flow with moving rigid bodies. In: Feistauer M, Dolejší V, Knobloch P, Najzar K (eds) Numerical mathematics and advanced applications. Springer, Berlin. https://doi.org/10.1007/978-3-642-18775-9_83

    Chapter  Google Scholar 

  17. Wan D, Turek S (2007) An efficient multigrid-FEM method for the simulation of solid–liquid two phase flows. J Comput Appl Math 203(2):561–580. https://doi.org/10.1016/j.cam.2006.04.021

    Article  MathSciNet  MATH  Google Scholar 

  18. MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2008) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39. https://doi.org/10.1017/s0022112008004011

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng YT, Han K, Owen DRJ (2009) Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid-particle interactions with experimental assessment. Int J Numer Methods Eng 81:229–245. https://doi.org/10.1002/nme.2689

    Article  MathSciNet  MATH  Google Scholar 

  20. Hager A, Kloss C, Pirker S, Goniva C (2012) Parallel open source CFD-DEM for resolved particle-fluid interaction. 1–6.

  21. Sun R, Xiao H (2016) SediFoam: a general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Comput Geosci 89:207–219. https://doi.org/10.1016/j.cageo.2016.01.011

    Article  Google Scholar 

  22. Kim J, Choi H (2004) An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries. KSME Int J 18(6):1026–1035. https://doi.org/10.1007/bf02990875

    Article  Google Scholar 

  23. Pacheco JR, Pacheco-Vega A, Rodić T, Peck RE (2005) Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids. Numer Heat Transfer Part B 48(1):1–24. https://doi.org/10.1080/10407790590935975

    Article  Google Scholar 

  24. Demirdžić I, Lilek Ž, Perić M (1992) Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions. Int J Numer Methods Fluids 15(3):329–354. https://doi.org/10.1002/fld.1650150306

    Article  MATH  Google Scholar 

  25. Gan H, Chang J, Feng JJ, Hu HH (2003) Direct numerical simulation of the sedimentation of solid particles with thermal convection. J Fluid Mech 481:385–411. https://doi.org/10.1017/s0022112003003938

    Article  MATH  Google Scholar 

  26. Gan H, Feng JJ, Hu HH (2003) Simulation of the sedimentation of melting solid particles. Int J Multiphase Flow 29(5):751–769. https://doi.org/10.1016/s0301-9322(03)00035-1

    Article  MATH  Google Scholar 

  27. Yu Z, Shao X, Wachs A (2006) A fictitious domain method for particulate flows with heat transfer. J Comput Phys 217(2):424–452. https://doi.org/10.1016/j.jcp.2006.01.016

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng Z-G, Michaelides EE (2008) Inclusion of heat transfer computations for particle laden flows. Phys Fluids 20(4):040604. https://doi.org/10.1063/1.2911022

    Article  MATH  Google Scholar 

  29. Feng Z-G, Musong SG (2014) Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed. Powder Technol 262:62–70. https://doi.org/10.1016/j.powtec.2014.04.019

    Article  Google Scholar 

  30. Tavassoli H, Kriebitzsch SHL, van der Hoef MA, Peters EAJF, Kuipers JAM (2013) Direct numerical simulation of particulate flow with heat transfer. Int J Multiphase Flow 57:29–37. https://doi.org/10.1016/j.ijmultiphaseflow.2013.06.009

    Article  Google Scholar 

  31. Seddeek M, Afify A, Al A (2009) Similarity solutions for a steady MHD Falkner-Skan flow and heat transfer over a wedge considering the effects of variable viscosity and thermal conductivity. Applications and Applied Mathematics [electronic only]:4

  32. Rietema K, van den Akker HEA (1983) On the momentum equations in dispersed two-phase systems. Int J Multiphase Flow 9(1):21–36. https://doi.org/10.1016/0301-9322(83)90004-6

    Article  MATH  Google Scholar 

  33. Osiptsov A (1997) Mathematical modeling of dusty-gas boundary layers. Appl Mech Rev 50:357–370. https://doi.org/10.1115/1.3101716

    Article  Google Scholar 

  34. Palani G, Ganesan P (2007) Heat transfer effects on dusty gas flow past a semi-infinite inclined plate. Forsch Ingenieurwes 71(3-4):223–230. https://doi.org/10.1007/s10010-007-0061-9

    Article  Google Scholar 

  35. Majlesara M, Abouali O, Kamali R (2020) Fully resolved numerical simulation of free convection of falling spherical particles in sedimentation transports using immersed boundary method. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-020-00348-7

  36. Feng Z-G, Michaelides EE (2009) Heat transfer in particulate flows with direct numerical simulation (DNS). Int J Heat Mass Transf 52(3-4):777–786. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.023

    Article  MATH  Google Scholar 

  37. Deen NG, Kriebitzsch SHL, van der Hoef MA, Kuipers JAM (2012) Direct numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem Eng Sci 81:329–344. https://doi.org/10.1016/j.ces.2012.06.055

    Article  Google Scholar 

  38. Hu J, Guo Z (2017) A numerical study on the migration of a neutrally buoyant particle in a Poiseuille flow with thermal convection. Int J Heat Mass Transf 108:2158–2168. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.077

    Article  Google Scholar 

  39. Walayat K, Wang Z, Usman K, Liu M (2018) An efficient multi-grid finite element fictitious boundary method for particulate flows with thermal convection. Int J Heat Mass Transf 126:452–465. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.007

    Article  Google Scholar 

  40. Xu A, Shi L, Zhao TS (2018) Thermal effects on the sedimentation behavior of elliptical particles. Int J Heat Mass Transf 126:753–764. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.073

    Article  Google Scholar 

  41. Walayat K, Zhang Z, Usman K, Chang J, Liu M (2018) Dynamics of elliptic particle sedimentation with thermal convection. Phys Fluids 30(10):103301. https://doi.org/10.1063/1.5051817

    Article  Google Scholar 

  42. Kuai J, Zhang H, Zhang F (2010) Grinding force model of single abrasive grain based on variable friction coefficient. In: Fourth International Seminar on Modern Cutting and Measurement Engineering. https://doi.org/10.1117/12.888621

    Chapter  Google Scholar 

  43. Anderson D, Warkentin A, Bauer R (2011) Experimental and numerical investigations of single abrasive-grain cutting. Int J Mach Tools Manuf 51(12):898–910. https://doi.org/10.1016/j.ijmachtools.2011.08.006

    Article  Google Scholar 

  44. Wang S, Li C, Zhang X et al (2014) Modeling and simulation of the single grain grinding process of the nano-particle jet flow of minimal quantity lubrication. Open Mater Sci J 2014(8):55–62

    Article  Google Scholar 

  45. Setti D, Ghosh S, Paruchuri VR (2016) Influence of nanofluid application on wheel wear, coefficient of friction and redeposition phenomenon in surface grinding of Ti-6Al-4V. Proc Inst Mech Eng B J Eng Manuf 232(1):128–140. https://doi.org/10.1177/0954405416636039

    Article  Google Scholar 

  46. Chen X, Öpöz TT (2016) Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Prod Manuf Res 4(1):190–208. https://doi.org/10.1080/21693277.2016.1255159

    Article  Google Scholar 

  47. Ardashev DV, Dyakonov AA (2017) Mathematical model of the grinding force with account for blunting of abrasive grains of the grinding wheel. J Manuf Sci Eng 139(12):121005. https://doi.org/10.1115/1.4037939

    Article  Google Scholar 

  48. Wang Q, Zhao W, Liang Z, Wang X, Zhou T, Wu Y, Jiao L (2018) Investigation of diamond wheel topography in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using fractal analysis method. Ultrasonics 84:87–95. https://doi.org/10.1016/j.ultras.2017.10.012

    Article  Google Scholar 

  49. Kovač P, Gostimirović M (2018) Grinding force of cylindrical and creep-feed grinding modeling. Abrasive Technology - Characteristics and Applications. https://doi.org/10.5772/intechopen.76968

  50. Li Z, Zhang F, Luo X, Guo X, Cai Y, Chang W, Sun J (2018) A new grinding force model for micro grinding RB-SiC ceramic with grinding wheel topography as an input. Micromachines 9(8):368. https://doi.org/10.3390/mi9080368

    Article  Google Scholar 

  51. Ni J, Feng K, Al-Furjan MSH, Xu X, Xu J (2019) Establishment and verification of the cutting grinding force model for the disc wheel based on piezoelectric sensors. Sensors 19(3):725. https://doi.org/10.3390/s19030725

    Article  Google Scholar 

  52. Adiyaman O, Demir Z (2019) Model and formulation in grinding mechanism having advanced secondary rotational axis. Meas Control 52:326–337. https://doi.org/10.1177/0020294019837988

    Article  Google Scholar 

  53. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2007) Finite element modeling of grind hardening process. In: 10th CIRP International Workshop on Modeling of Machining Operations, Calabria, Italy, pp 117–123

    Google Scholar 

  54. Salonitis K, Tsoukantas G, Stavropoulos P, Stournaras A, Chondros T, Chryssolouris G (2006) Process forces modelling in grind-hardening. In: 9th CIRP International Workshop on Modeling of Machining Operations, Bled, Slovenia, pp 295–302

    Google Scholar 

  55. Yi J, Jin T, Deng Z, Zhou W (2019) Estimation of residual stresses in gear form grinding using finite element analysis and experimental study based on grinding force and heat flux distribution models. Int J Adv Manuf Technol 104:849–866. https://doi.org/10.1007/s00170-019-03825-9

    Article  Google Scholar 

  56. Wang Z, Li Y, Yu T, Zhao J, Wen PH (2018) Prediction of 3D grinding temperature field based on meshless method considering infinite element. Int J Adv Manuf Technol 100:3067–3084. https://doi.org/10.1007/s00170-018-2801-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Al-Nehari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nehari, M., Liang, G., Ming, L. et al. Grinding mechanism of high-temperature nickel-based alloy using FEM-FBM technique. Int J Adv Manuf Technol 112, 87–105 (2021). https://doi.org/10.1007/s00170-020-06328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06328-0

Keywords

Navigation