Skip to main content
Log in

Comparative performance analysis of cemented carbide, TiN, TiAlN, and PCD coated inserts in dry machining of Al 2024 alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Dry machining of aluminum (Al) 2024 alloy has been performed with four different cutting inserts (cemented carbide, titanium nitride (TiN) coated, titanium aluminum nitride (TiAlN) coated, and polycrystalline diamond (PCD) coated), and their performance is assessed for tool wear and workpiece surface roughness. Design of experiments and response surface methodology (RSM) was performed to optimize the cutting parameters. TiAlN coated inserts presented an average ≈ 21%, ≈ 36%, and ≈ 58% less tool wear than the uncoated cemented carbide, TiN and PCD coated inserts, respectively. While TiN coated inserts exhibited an average ≈ 17%, ≈ 37%, and ≈ 42% less workpiece surface roughness than the uncoated cemented carbide, TiAlN, and PCD coated inserts, respectively. PCD coated inserts have greater mechanical properties, but due to the poor adhesion strength of the coating, it performed worst regarding tool wear and workpiece surface roughness. Energy dispersive X-ray spectroscopy (EDX) analysis of the chips validated our findings that the adhesion of coated tools is also very important for the evaluation of machining performance other than mechanical properties. It is concluded that the mechanical properties and adhesion of the coated tools are both important in assessing the tool wear and workpiece surface roughness. Also, the research community and industry need to consider adhesion strength of the coated tools for better machining performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Santos MC, Machado AR, Sales WF, Barrozo MA, Ezugwu EO (2016) Machining of aluminum alloys: a review. Int J Adv Manuf Technol 86(9–12):3067–3080. https://doi.org/10.1007/s00170-016-8431-9

    Article  Google Scholar 

  2. Pattnaik SK, Bhoi NK, Padhi S, Sarangi SK (2018) Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear. Int J Adv Manuf Technol 98(1–4):55–65. https://doi.org/10.1007/s00170-017-0307-0

    Article  Google Scholar 

  3. Sánchez J, Rubio E, Álvarez M, Sebastián M, Marcos M (2005) Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys. J Mater Process Technol 164:911–918. https://doi.org/10.1016/j.jmatprotec.2005.02.058

    Article  Google Scholar 

  4. Gómez-Parra A, Álvarez-Alcón M, Salguero J, Batista M, Marcos M (2013) Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear 302(1–2):1209–1218. https://doi.org/10.1016/j.wear.2012.12.001

    Article  Google Scholar 

  5. Gangopadhyay S, Acharya R, Chattopadhyay A, Paul S (2010) On deposition and characterisation of MoS x-Ti multilayer coating and performance evaluation in dry turning of aluminium alloy and steel. In: Proceedings of the 36th International MATADOR Conference. Springer, pp 247–250. https://doi.org/10.1007/978-1-84996-432-6_57

  6. Wagner V, Vissio A, Duc E, Pijolat M (2016) Relationship between cutting conditions and chips morphology during milling of aluminium Al-2050. Int J Adv Manuf Technol 82(9–12):1881–1897. https://doi.org/10.1007/s00170-015-7490-7

    Article  Google Scholar 

  7. Sreejith P, Ngoi B (2000) Dry machining: machining of the future. J Mater Process Technol 101(1–3):287–291. https://doi.org/10.1016/S0924-0136(00)00445-3

    Article  Google Scholar 

  8. Shareef I, Natarajan M, Ajayi OO (2005) Dry machinability of aluminum alloys. In: Proceedings of the World Tribology Congress III. World Tribology Congress III, volume 1, Washington, D.C., USA, September 12–16. ASME, pp 831–832. https://doi.org/10.1115/WTC2005-64098

  9. Mabrouki T, Girardin F, Asad M, Rigal J-F (2008) Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). Int J Mach Tools Manuf 48(11):1187–1197. https://doi.org/10.1016/j.ijmachtools.2008.03.013

    Article  Google Scholar 

  10. Kök M (2011) Modelling the effect of surface roughness factors in the machining of 2024Al/Al 2 O 3 particle composites based on orthogonal arrays. Int J Adv Manuf Technol 55(9–12):911–920. https://doi.org/10.1007/s00170-010-3134-0

    Article  Google Scholar 

  11. Zafar MQ, Uddin GM, Asim M, Khan AA, Tahir Z-U-R, Hayat N, Ghufran M, Jawad M (2020) Comparative analysis of low-temperature PVD-based TiN nano-thin-film-coated and-uncoated TNMG inserts in dry machining. J Chin Inst Eng 43(2):143–152. https://doi.org/10.1080/02533839.2019.1694438

    Article  Google Scholar 

  12. Liew W, Hutchings I, Williams J (1998) Friction and lubrication effects in the machining of aluminium alloys. Tribol Lett 5(1):117–122. https://doi.org/10.1023/A:1019164918708

    Article  Google Scholar 

  13. Manna A, Bhattacharayya B (2005) Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. Int J Adv Manuf Technol 25(9–10):850–856. https://doi.org/10.1007/s00170-003-1917-2

    Article  Google Scholar 

  14. Seshadri R, Naveen I, Srinivasan S, Viswasubrahmanyam M, VijaySekar K, Kumar MP (2013) Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy. Procedia Eng 64:1454–1463. https://doi.org/10.1016/j.proeng.2013.09.227

    Article  Google Scholar 

  15. Davim JP, Maranhao C, Jackson M, Cabral G, Gracio J (2008) FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. Int J Adv Manuf Technol 39(11–12):1093–1100. https://doi.org/10.1007/s00170-007-1299-y

    Article  Google Scholar 

  16. Hovsepian PE, Luo Q, Robinson G, Pittman M, Howarth M, Doerwald D, Tietema R, Sim W, Deeming A, Zeus T (2006) TiAlN/VN superlattice structured PVD coatings: a new alternative in machining of aluminium alloys for aerospace and automotive components. Surf Coat Technol 201(1–2):265–272. https://doi.org/10.1016/j.surfcoat.2005.11.106

    Article  Google Scholar 

  17. Vereschaka A, Aksenenko A, Sitnikov N, Migranov M, Shevchenko S, Sotova C, Batako A, Andreev N (2018) Effect of adhesion and tribological properties of modified composite nano-structured multi-layer nitride coatings on WC-Co tools life. Tribol Int 128:313–327. https://doi.org/10.1016/j.triboint.2018.07.039

    Article  Google Scholar 

  18. Vereschaka AA, Grigoriev S, Sitnikov NN, Bublikov JI, Batako AD (2018) Effect produced by thickness of nanolayers of multilayer composite wear-resistant coating on tool life of metal-cutting tool in turning of steel AISI 321. Procedia CIRP 77:549–552. https://doi.org/10.1016/j.procir.2018.08.236

    Article  Google Scholar 

  19. Hao T, Du J, Su G, Zhang P, Sun Y, Zhang J (2020) Mechanical and cutting performance of cemented carbide tools with Cr/x/DLC composite coatings. Int J Adv Manuf Technol 106(11):5241–5254. https://doi.org/10.1007/s00170-020-05014-5

    Article  Google Scholar 

  20. Bauccio M (1993) ASM Metals Reference Book 1993. ASM International, Materials Park. TIC:240701

  21. Navarro-Devia J, Amaya C, Caicedo J, Aperador W (2017) Performance evaluation of HSS cutting tool coated with hafnium and vanadium nitride multilayers, by temperature measurement and surface inspection, on machining AISI 1020 steel. Surf Coat Technol 332:484–493. https://doi.org/10.1016/j.surfcoat.2017.08.074

    Article  Google Scholar 

  22. Kishore DSC, Rao KP, Mahamani A (2014) Investigation of cutting force, surface roughness and flank wear in turning of in-situ Al6061-TiC metal matrix composite. Procedia Mater Sci 6:1040–1050. https://doi.org/10.1016/j.mspro.2014.07.175

    Article  Google Scholar 

  23. Zahoor S, Mufti NA, Saleem MQ, Mughal MP, Qureshi MAM (2017) Effect of machine tool’s spindle forced vibrations on surface roughness, dimensional accuracy, and tool wear in vertical milling of AISI P20. Int J Adv Manuf Technol 89(9–12):3671–3679. https://doi.org/10.1007/s00170-016-9346-1

    Article  Google Scholar 

  24. Bull S, Berasetegui E (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114. https://doi.org/10.1016/j.triboint.2005.04.013

    Article  Google Scholar 

  25. Uddin GM, Jawad M, Ghufran M, Saleem MW, Raza MA, Rehman ZU, Arafat SM, Irfan M, Waseem B (2019) Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. Int J Adv Manuf Technol 102(5–8):1391–1404. https://doi.org/10.1007/s00170-018-03244-2

    Article  Google Scholar 

  26. Mubarak A, Akhter P, Hamzah E, Mohd Toff MRH, Qazi IA (2008) Effect of coating thickness on the properties of TiN coatings deposited on tool steels using cathodic arc PVD technique. Surf Rev Lett 15(04):401–410. https://doi.org/10.1142/S0218625X08011524

    Article  Google Scholar 

  27. Uddin GM, Khan AA, Ghufran M, Tahir Z-u-R, Asim M, Sagheer M, Jawad M, Ahmad J, Irfan M, Waseem B (2018) Experimental study of tribological and mechanical properties of TiN coating on AISI 52100 bearing steel. Adv Mech Eng 10(9):1687814018802882. https://doi.org/10.1177/1687814018802882

    Article  Google Scholar 

  28. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36. https://doi.org/10.1016/S1044-5803(02)00192-4

    Article  Google Scholar 

  29. Beegan D, Chowdhury S, Laugier M (2007) Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf Coat Technol 201(12):5804–5808. https://doi.org/10.1016/j.surfcoat.2006.10.031

    Article  Google Scholar 

  30. Uddin GM, Sajid Kamran M, Ahmad J, Ghufran M, Asim M, Qasim Zafar M, Irfan M, Waseem B, Khan AA, Jawad M (2018, 2018) Comparative experimental study of tribo-mechanical performance of low-temperature PVD based TiN coated PRCL systems for diesel engine. Adv Tribol:1–12. https://doi.org/10.1155/2018/9437815

  31. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  32. Li B (2011) Chip morphology of normalized steel when machining in different atmospheres with ceramic composite tool. Int J Refract Met Hard Mater 29(3):384–391. https://doi.org/10.1016/j.ijrmhm.2011.01.011

    Article  Google Scholar 

  33. Farhat Z (2003) Wear mechanism of CBN cutting tool during high-speed machining of mold steel. Mater Sci Eng A 361(1–2):100–110. https://doi.org/10.1016/S0921-5093(03)00503-3

    Article  Google Scholar 

  34. Kanlayasiri K, Boonmung S (2007) Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model. J Mater Process Technol 192:459–464. https://doi.org/10.1016/j.jmatprotec.2007.04.085

    Article  Google Scholar 

  35. Verma V, Sahu R (2017) Process parameter optimization of die-sinking EDM on titanium grade–V alloy (Ti6Al4V) using full factorial design approach. Mater Today Proc 4(2):1893–1899. https://doi.org/10.1016/j.matpr.2017.02.034

    Article  Google Scholar 

  36. Navarro-Devia J, Amaya C, Caicedo J, Martínez J, Aperador W (2019) Hafnium and vanadium nitride multilayer coatings [HfN/VN] n deposited onto HSS cutting tools for dry turning of a low carbon steel: a tribological compatibility case study. Int J Adv Manuf Technol 101(5–8):2065–2081. https://doi.org/10.1007/s00170-018-3020-8

    Article  Google Scholar 

  37. Singaravel B, Selvaraj T (2016) Application of desirability function analysis and utility concept for selection of optimum cutting parameters in turning operation. J Adv Manuf Syst 15(01):1–11. https://doi.org/10.1142/S0219686716500013

    Article  Google Scholar 

  38. Kouam J, Songmene V, Balazinski M, Hendrick P (2015) Effects of minimum quantity lubricating (MQL) conditions on machining of 7075-T6 aluminum alloy. Int J Adv Manuf Technol 79(5–8):1325–1334. https://doi.org/10.1007/s00170-015-6940-6

    Article  Google Scholar 

  39. List G, Nouari M, Géhin D, Gomez S, Manaud J-P, Le Petitcorps Y, Girot F (2005) Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259(7–12):1177–1189. https://doi.org/10.1016/j.wear.2005.02.056

    Article  Google Scholar 

  40. Haddag B, Atlati S, Nouari M, Moufki A (2016) Dry machining aeronautical aluminum alloy AA2024-T351: analysis of cutting forces, chip segmentation and built-up edge formation. Metals 6(9):197. https://doi.org/10.3390/met6090197

    Article  Google Scholar 

  41. Sreejith P (2008) Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater Lett 62(2):276–278. https://doi.org/10.1016/j.matlet.2007.05.019

    Article  Google Scholar 

  42. Saary MJ (2008) Radar plots: a useful way for presenting multivariate health care data. J Clin Epidemiol 61(4):311–317. https://doi.org/10.1016/j.jclinepi.2007.04.021

    Article  Google Scholar 

  43. Seeman M, Ganesan G, Karthikeyan R, Velayudham A (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48(5–8):613–624. https://doi.org/10.1007/s00170-009-2297-z

    Article  Google Scholar 

  44. Makadia AJ, Nanavati J (2013) Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 46(4):1521–1529. https://doi.org/10.1016/j.measurement.2012.11.026

    Article  Google Scholar 

  45. Habib SS (2009) Study of the parameters in electrical discharge machining through response surface methodology approach. Appl Math Model 33(12):4397–4407. https://doi.org/10.1016/j.apm.2009.03.021

    Article  MATH  Google Scholar 

  46. Montgomery DC (2017) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  47. Aggarwal V, Khangura SS, Garg R (2015) Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. Int J Adv Manuf Technol 79(1–4):31–47. https://doi.org/10.1007/s00170-015-6797-8

    Article  Google Scholar 

  48. Sahoo AK, Sahoo B (2013) Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: part-II (RSM, grey relational and techno economical approach). Measurement 46(8):2868–2884. https://doi.org/10.1016/j.measurement.2012.09.023

    Article  Google Scholar 

  49. Palanikumar K (2007) Modeling and analysis for surface roughness in machining glass fibre reinforced plastics using response surface methodology. Mater Des 28(10):2611–2618. https://doi.org/10.1016/j.matdes.2006.10.001

    Article  Google Scholar 

  50. Bouacha K, Yallese MA, Mabrouki T, Rigal J-F (2010) Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int J Refract Met Hard Mater 28(3):349–361. https://doi.org/10.1016/j.ijrmhm.2009.11.011

    Article  Google Scholar 

  51. Ghufran M, Uddin GM, Arafat SM, Jawad M, Rehman A (2020) Development and tribo-mechanical properties of functional ternary nitride coatings: applications-based comprehensive review. Proc Inst Mech Eng J J Eng Tribol:1350650120933412. https://doi.org/10.1177/1350650120933412

  52. Badisch E, Mitterer C, Mayrhofer P, Mori G, Bakker R, Brenner J, Störi H (2004) Characterization of tribo-layers on self-lubricating plasma-assisted chemical-vapor-deposited TiN coatings. Thin Solid Films 460(1–2):125–132. https://doi.org/10.1016/j.tsf.2004.01.091

    Article  Google Scholar 

  53. Guleryuz CG, Krzanowski JE (2010) Mechanisms of self-lubrication in patterned TiN coatings containing solid lubricant microreservoirs. Surf Coat Technol 204(15):2392–2399. https://doi.org/10.1016/j.surfcoat.2010.01.012

    Article  Google Scholar 

  54. Stoiber M, Badisch E, Lugmair C, Mitterer C (2003) Low-friction TiN coatings deposited by PACVD. Surf Coat Technol 163:451–456. https://doi.org/10.1016/S0257-8972(02)00642-4

    Article  Google Scholar 

  55. de Paiva JM, Torres RD, Amorim FL, Covelli D, Tauhiduzzaman M, Veldhuis S, Dosbaeva G, Fox-Rabinovich G (2017) Frictional and wear performance of hard coatings during machining of superduplex stainless steel. Int J Adv Manuf Technol 92(1–4):423–432. https://doi.org/10.1007/s00170-017-0141-4

    Article  Google Scholar 

  56. Das SR, Panda A, Dhupal D (2017) Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert. Mech Adv Mater Modern Process 3(1):9. https://doi.org/10.1186/s40759-017-0025-1

    Article  Google Scholar 

  57. Horng J-T, Liu N-M, Chiang K-T (2008) Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology. J Mater Process Technol 208(1–3):532–541. https://doi.org/10.1016/j.jmatprotec.2008.01.018

    Article  Google Scholar 

  58. Yahya E, Ding GF, Qin SF (2015) Optimization of machining parameters based on surface roughness prediction for AA6061 using response surface method. Am J Sci Technol 2(5):220–231. https://www.semanticscholar.org/paper/Optimization-of-Machining-Parameters-Based-on-for-Yahya-Ding/cf11a227f57b13bd41f2d7ebc1c5a543174560e4. Accessed Aug 2020

  59. Gong J, Peng Z, Miao H (2005) Analysis of the nanoindentation load–displacement curves measured on high-purity fine-grained alumina. J Eur Ceram Soc 25(5):649–654. https://doi.org/10.1016/j.jeurceramsoc.2004.04.003

    Article  Google Scholar 

  60. Yanfeng W, Zhengxian L, Haonan W, Jihong D, Changwei Z (2017) Effect of multilayered structure on properties of Ti/TiN coating. Rare Metal Mater Eng 46(5):1219–1224. https://doi.org/10.1016/S1875-5372(17)30140-6

    Article  Google Scholar 

  61. Beake B, Ogwu A, Wagner T (2006) Influence of experimental factors and film thickness on the measured critical load in the nanoscratch test. Mater Sci Eng A 423(1–2):70–73. https://doi.org/10.1016/S1875-5372(17)30140-6

    Article  Google Scholar 

  62. Stallard J, Poulat S, Teer D (2006) The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester. Tribol Int 39(2):159–166. https://doi.org/10.1016/j.triboint.2005.04.011

    Article  Google Scholar 

  63. Bull S (1991) Failure modes in scratch adhesion testing. Surf Coat Technol 50(1):25–32. https://doi.org/10.1016/0257-8972(91)90188-3

    Article  Google Scholar 

  64. Bull S (1997) Failure mode maps in the thin film scratch adhesion test. Tribol Int 30(7):491–498. https://doi.org/10.1016/S0301-679X(97)00012-1

    Article  Google Scholar 

  65. Berger L-M (2015) Tribology of thermally sprayed coatings in the Al2O3-Cr2O3-TiO2 system. In: Thermal sprayed coatings and their tribological performances. IGI Global, pp 227–267. https://doi.org/10.4018/978-1-4666-7489-9.ch008

  66. Kong Y, Tian X, Gong C, Chu PK (2008) Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing. Surf Coat Technol 344:204–213. https://doi.org/10.1016/j.surfcoat.2018.03.027

    Article  Google Scholar 

  67. Pei Y, Galvan D, De Hosson JTM (2005) Super-low friction behavior of nanostructured DLC composite coatings. WIT Trans Eng Sci 49:185–194. https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/49/15363. Accessed Nov 2019

  68. Godet M (1990) Third-bodies in tribology. Wear 136(1):29–45. https://doi.org/10.1016/0043-1648(90)90070-Q

    Article  Google Scholar 

  69. Cherif K, Gueroult B, Rigaud M (1997) Al2O3–ZrO2 debris life cycle during wear: effects of the third body on wear and friction. Wear 208(1–2):161–168. https://doi.org/10.1016/S0043-1648(96)07455-8

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Pakistan Industrial Technical Assistance Centre (PITAC) for the machining facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Zeid.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, G.M., Joyia, F.M., Ghufran, M. et al. Comparative performance analysis of cemented carbide, TiN, TiAlN, and PCD coated inserts in dry machining of Al 2024 alloy. Int J Adv Manuf Technol 112, 1461–1481 (2021). https://doi.org/10.1007/s00170-020-06315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06315-5

Keywords

Navigation