Skip to main content
Log in

Design and optimization of plasma jet nozzles based on computational fluid dynamics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study aims at identifying an optimal solution for the design of convergent-divergent nozzles discharging high-temperature plasma jets. Optimized profile parameters (e.g. throat size, depths of convergent and divergent parts) were developed to enhance the processing capability of the inductively coupled plasma torch. The temperature and velocity of the plasma jet are studied both along the axis of the nozzle and onto the impinged substrate surface. Computational fluid dynamics analysis of 55 models with different cross-sectional profiles highlights cases that can be used to enhance plasma figuring processes. The enhanced nozzles are compared with the benchmark nozzle in all selection criteria. This optimization approach is proven to provide an efficient design method of plasma nozzles for future processing activities. The rapid design and optimization of the nozzle are expected to adjust the material removal footprint of plasma process in metre-scale optical fabrication. Experimental results prove that the enhanced nozzle has 5% higher efficiency against the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K (2019) Etching characteristics of quartz crystal wafers using argon-based atmospheric pressure cf 4 plasma stabilized by ethanol addition. Nanomanufact Metrol 2(3):168–176. https://doi.org/10.1007/s41871-019-00044-4

    Article  Google Scholar 

  2. Piechulla P, Bauer J, Boehm G, Paetzelt H, Arnold T (2016) Etch mechanism and temperature regimes of an atmospheric pressure chlorine-based plasma jet process. Plasma Process Polym 13(11):1128–1135. https://doi.org/10.1002/ppap.201600071

    Article  Google Scholar 

  3. Li D, Li N, Su X, Ji P, Wang B (2019) Atmospheric pressure plasma processing of an optical sinusoidal grid. Micromachines 10(12):828. https://doi.org/10.3390/mi10120828

    Article  Google Scholar 

  4. Qin S, Deng H (2019) Electrochemical etching of tungsten for fabrication of sub-10-nm tips with a long taper and a large shank. Nanomanufact Metrol 2(4):235–240. https://doi.org/10.1007/s41871-019-00050-6

    Article  Google Scholar 

  5. Shore P, Cunningham C, DeBra D, Evans C, Hough J, Gilmozzi R, Kunzmann H, Morantz P, Tonnellier X (2010) Precision engineering for astronomy and gravity science. CIRP Ann 59(2):694–716. https://doi.org/10.1016/j.cirp.2010.05.003

    Article  Google Scholar 

  6. Castelli M, Jourdain R, Morantz P, Shore P (2012) Rapid optical surface figuring using reactive atom plasma. Precis Eng 36(3):467–476. https://doi.org/10.1016/j.precisioneng.2012.02.005

    Article  Google Scholar 

  7. Jourdain R, Castelli M, Yu N, Gourma M, Shore P (2016) Estimation of the power absorbed by the surface of optical components processed by an inductively coupled plasma torch. Appl Therm Eng 108:1372–1382. https://doi.org/10.1016/j.applthermaleng.2016.08.024

    Article  Google Scholar 

  8. Deshpande ON, Narappanawar NL 2015. Space advantage provided by De-Laval Nozzle and Bell Nozzle over Venturi. Proc World Congr Eng 2

  9. Deshpande ND, Vidwans SS, Mahale PR, Joshi RS, Jagtap KR (2014) Theoretical and CFD analysis of De-Laval Nozzle. Int J Mech Prod Eng 2(4):2320–2092

    Google Scholar 

  10. Yu N, Jourdain R, Gourma M, Shore P (2016) Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces. Int J Adv Manuf Technol 87(1-4):735–745. https://doi.org/10.1007/s00170-016-8502-y

    Article  Google Scholar 

  11. Zhai W, Gao B, Chang J, Wang H (2019) Optimization of ultrasonic-assisted polishing SiC through CFD simulation. Nanomanufact Metrol 2(1):36–44. https://doi.org/10.1007/s41871-018-0033-8

    Article  Google Scholar 

  12. Khan SA, Aabid A, Baig MAA (2018) CFD analysis of CD nozzle and effect of nozzle pressure ratio on pressure and velocity for suddenly expanded flows. Int J Mech Prod Eng Res Dev 8:1147–1158. https://doi.org/10.24247/ijmperdjun2018119

    Article  Google Scholar 

  13. Quintao KK (2012) Design optimization of nozzle shapes for maximum uniformity of exit flow. FIU Electronic Theses and Dissertations. 779. https://doi.org/10.25148/etd.FI12120505

  14. Winne SJ, Chandrasekaran M (2015) Optimization of nozzle: convergence using Ansys with RSM, MOGA. ARPN J Eng Appl Sci 10(13):5486–5489 http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0715_2276.pdf

    Google Scholar 

  15. Clark, I., Thomas, R.H. and Guo, Y., 2018. Aircraft system noise assessment of the NASA D8 subsonic transport concept. In: 2018 AIAA/CEAS Aeroacoustics Conference (p. 3124). https://doi.org/10.2514/6.2018-3124

  16. Cuppoletti D, Gutmark E, Gustafsson KM, Hafsteinsson H, Eriksso, LE, Prisell E (2012) Nozzle throat optimization on acoustics and performance of a supersonic jet. In: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference) (p. 2256). https://doi.org/10.2514/6.2012-2256

  17. Murugan N, Saravanan V, Nagaraju Doddi H, Nejaamtheen MN, Sanal Kumar VR, Murugesh P (2017) Conceptual design and shape optimization of a pintle nozzle for controllable thrust propulsion and steering. In: 53rd AIAA/SAE/ASEE Joint Propulsion Conference (p. 4870). doi:org/10.2514/6.2017-4870

  18. Zhang H, Wang L, Jia L, Zhao H, Wang C (2018) Influence investigation of friction on supersonic ejector performance. Int J Refrig 85:229–239. https://doi.org/10.1016/j.ijrefrig.2017.09.028

    Article  Google Scholar 

  19. Heath C, Nielsen EJ, Park MA, Gray JS (2015) Aerodynamic shape optimization of a two-stream supersonic plug nozzle. In: 53rd AIAA Aerospace Sciences Meeting (p. 1047). https://doi.org/10.2514/6.2015-1047

  20. Mostaghimi J, Proulx P, Boulos MI (1984) Parametric study of the flow and temperature fields in an inductively coupled rf plasma torch. Plasma Chem Plasma Process 4(3):199–217

    Article  Google Scholar 

  21. Morsli M, Proulx P, Gravelle D (2011) Chemical non-equilibrium modelling of an argon–oxygen supersonic ICP. Plasma Sources Sci Technol 20(1):015016 (11 pp)

    Article  Google Scholar 

  22. Sember V, Gravelle DV, Boulos MI (2002) Spectroscopic study of a supersonic plasma jet generated by an ICP torch with a convergentdivergent nozzle. J Phys D Appl Phys 35(12):1350. https://doi.org/10.1088/0022-3727/35/12/311

  23. El Morsli M, Proulx P (2007) A chemical non-equilibrium model of an air supersonic ICP. J Phys D Appl Phys 40(2):380–394. https://doi.org/10.1088/0022-3727/40/2/015

    Article  Google Scholar 

  24. Fang F, Xu F (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanufact Metrol 1(1):4–31. https://doi.org/10.1007/s41871-018-0005-z

    Article  Google Scholar 

  25. Wang J, Fang F, Yan G, Guo Y (2019) Study on diamond cutting of ion implanted tungsten carbide with and without ultrasonic vibration. Nanomanufact Metrol 2(3):177–185. https://doi.org/10.1007/s41871-019-00042-6

    Article  Google Scholar 

  26. Yu N, Jourdain R, Gourma M, Shore P (2014) Analysis of nozzle design used for the creation of advanced energy beam. In: Proceedings of 29th ASPE Annual Meeting (pp. 200–205)

  27. Constantin P, Foias C (1988) Navier-stokes equations. University of Chicago Press

  28. ANSYS A (2016) ANSYS Fluent User’s Guide, 17.2. ANSYS, Canonsburg

    Google Scholar 

  29. Yu N, Jourdain R, Gourma M Bennett A, Fang F (2020) Power dissipation of an inductively coupled plasma torch under E mode dominated regime. Adv Manuf (SUBMITTED)

  30. Yu N (2016) Thermal analysis of energy beam using De-Laval nozzle in plasma figuring process. Thesis, Cranfield University

  31. Zhou H, Bennett A, Castelli M, Jourdain R, Guo J, Yu N (2020) Design of a motorised plasma delivery system for ultra-precision large optical fabrication. Int J Extreme Manuf (Accepted)

Download references

Funding

This research work was funded by the Science Foundation Ireland (SFI) (Grant No. 15/RP/B3208) and the Centre for Innovative Manufacturing in Ultra Precision of the Engineering and Physical Sciences Research Council (EPSRC) UK (EP/1033491/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhou Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, N., Yang, Y., Jourdain, R. et al. Design and optimization of plasma jet nozzles based on computational fluid dynamics. Int J Adv Manuf Technol 108, 2559–2568 (2020). https://doi.org/10.1007/s00170-020-05568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05568-4

Keywords

Navigation