Skip to main content
Log in

Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Natural fibre composites are a class of materials that are currently replacing the synthetic fibre composites for practical applications. This paper deals with the fabrication and investigation of hybrid natural/natural fibre composites obtained by a new technique based on statistical analysis of variance (ANOVA) by using the properties of the individual fibre composites. The influences of type of fibres, such as flax, jute and sisal, the type of chemical treatment and the volume fraction of fibre on the mechanical properties such as tensile strength, tensile modulus, flexural strength and flexural modulus of the composites, were evaluated. Mathematical models for mechanical properties were developed using the response surface methodology (RSM). Statistical analysis of the results showed that the mechanical properties are influenced principally by the volume fraction of fibre, then the type of fibres. On the opposite side, the type of chemical treatment has a very weak significance effect. Then, the best mechanical proprieties of composites were achieved at the highest volume fraction of fibre and when used the sodium bicarbonate NaHCO3 for treated fibres. Finally, the developed hybrid composite exhibited superior properties compared to the previous composites based on individual fibre composites when the fibre content is at 80 wt% of jute and 20 wt% of flax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ASTM:

American Standards of Technical Material

B :

Width of the beam, mm

BBD:

Box-Behnken design

DF:

Degrees of freedom

E f :

Mean flexural modulus, GPa

E t :

Mean tensile modulus, MPa

L :

Support span, mm

M :

Slope, N/mm

MS:

Mean squares

P f :

Maximum load, N

R 2 :

Coefficient of determination

RSM:

Response surface methodology

SC:

Sum of squares

VF :

Volume fraction of fibre, cm3

W m :

Weight of matrix, g

W f :

Weight of fibre, g

X1 :

Type of fibres

X2 :

Type of chemical treatment

X3 :

Volume fraction of fibre, wt.%

σ f :

Mean flexural strength, MPa

σ t :

Mean tensile strength, GPa

ρ f :

Density of fibre, g/cm3

ρ m :

Density of matrix, g/cm3

References

  1. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites. Compos Part A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  2. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2010) Influence of alkali-treated fibers on the mechanical properties and machinability of Roselle and sisal fiber hybrid polyester composite. Polym Compos 31:723–731. https://doi.org/10.1002/pc.20853

    Article  Google Scholar 

  3. Senthilkumar K, Saba N, Rajini N, Chandrasekar M, Jawaid M, Siengchin S (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  Google Scholar 

  4. Agopyan V (1988) Vegetable fibre reinforced building materials developments in Brazil and other Latin American countries, in: R.N. Swamy (Ed.), Natural fibre reinf cement concrete, Blackie, Glasgow 208–242 (Concrete Technology and Design, 5)

  5. Iricula M, Malhotra SK, Joseph K, Thomas S (2005) Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol 65:1077–1087. https://doi.org/10.1016/j.compscitech.2004.10.023

    Article  Google Scholar 

  6. Rao KMM, Rao KM, Prasad AVR (2010) Fabrication and testing of natural fibre composites: vakka, sisal, bamboo and banana. Mater Des 31:508–513. https://doi.org/10.1016/j.matdes.2009.06.023

    Article  Google Scholar 

  7. Prasad AVR, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: jowar, sisal and bamboo. Mater Des 32:4658–4663. https://doi.org/10.1016/j.matdes.2011.03.015

    Article  Google Scholar 

  8. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2013) Hybrid natural and glass fibres reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design. Mater Des 51:484–492. https://doi.org/10.1016/j.matdes.2013.04.072

    Article  Google Scholar 

  9. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 8:1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

    Article  Google Scholar 

  10. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  11. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  Google Scholar 

  12. Ben Brahim S, Ben Cheikh R (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147. https://doi.org/10.1016/j.compscitech.2005.10.006

    Article  Google Scholar 

  13. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476. https://doi.org/10.1177/0731684413495322

    Article  Google Scholar 

  14. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303. https://doi.org/10.1016/j.matdes.2012.04.003

    Article  Google Scholar 

  15. Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinylester composites. Compos Part A Appl Sci Manuf 40:2013–2019. https://doi.org/10.1016/j.compositesa.2009.09.003

    Article  Google Scholar 

  16. Yousif BF (2010) Effect of oil palm fibres volume fraction on mechanical properties of polyester composites. Int J Modern Physics B 24:4459–4470. https://doi.org/10.1142/S0217979210056633

    Article  Google Scholar 

  17. García del Pino G, Claudio Kieling A, Bezazi A, Boumediri H, Rolim de Souza JF, Valenzuela Díaz F, Valin Rivera JL, Dehaini J, Panzera TH (2020) Hybrid polyester composites reinforced with curauá fibres and nanoclays. Fiber Poly 21(2):399–406. https://doi.org/10.1007/s12221-020-9506-7

    Article  Google Scholar 

  18. Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: statistical approach. Compos B Eng 106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033

    Article  Google Scholar 

  19. Yousif BF, Shalwan A, Chin CW, Ming KC (2012) Flexural properties of treated and untreated kenaf/epoxy composites. Mater Des 40:378–385. https://doi.org/10.1016/j.matdes.2012.04.017

    Article  Google Scholar 

  20. Noorunnisa Khanam P, Abdul Khalil HPS, Ramachandra Reddy G, Venkata Naidu S (2011) Tensile, flexural and chemical resistance properties of sisal fibre reinforced polymer composites: effect of fibre surface treatment. J Polym Environ 19:115–119. https://doi.org/10.1007/s10924-010-0219-7

    Article  Google Scholar 

  21. Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  22. Vilay V, Mariattia M, Mat Taiba R, Todob M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638. https://doi.org/10.1016/j.compscitech.2007.10.005

    Article  Google Scholar 

  23. Bedjaoui A, Belaadi A, Amroune S, Madi B (2019) Impact of surface treatment of flax fibers on tensile mechanical properties accompanied by a statistical study. Int J Integ Eng 11:2600–7916

    Article  Google Scholar 

  24. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Applied Sci Manuf 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    Article  Google Scholar 

  25. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after alkali treatments. Compos Part A 37:423–429. https://doi.org/10.1016/j.compositesa.2005.05.045

    Article  Google Scholar 

  26. Nunna S, Chandra PR, Shrivastava S, Jalan A (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769. https://doi.org/10.1177/0731684412444325

    Article  Google Scholar 

  27. Gururaja MN, Rao ANH (2012) A review on recent applications and future prospectus of hybrid composites. Int J Soft Comput Eng 1(6):2231–2307

    Google Scholar 

  28. Shahzad A (2011) Impact and fatigue properties of hemp-glass fiber hybrid biocomposites. J Reinf Plast Compos 30(16):1389–1398. https://doi.org/10.1177/0731684411425975

    Article  Google Scholar 

  29. Venkateswaran N, Elayaperumal A, Sathiya GK (2012) Prediction of tensile properties of hybrid—natural fiber composites. Compos Part B 43:793–796. https://doi.org/10.1016/j.compositesb.2011.08.023

    Article  Google Scholar 

  30. Jawaid M, Adul Khalil HPS, Abu Bakar A (2011) Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater Sci Eng A 528:5190–5195. https://doi.org/10.1016/j.msea.2011.03.047

    Article  Google Scholar 

  31. Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29(1):12–29. https://doi.org/10.1177/0731684408095033

    Article  Google Scholar 

  32. Yusoff RB, Takagi H, Nakagaito AN (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crop Prod 94:562–573. https://doi.org/10.1016/j.indcrop.2016.09.017

    Article  Google Scholar 

  33. Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fibre reinforced epoxy hybrid composites. Compos B Eng 51:54–57. https://doi.org/10.1016/j.compositesb.2013.02.033

    Article  Google Scholar 

  34. Venkateshwaran N, Elayaperumal A, Sathiya GK (2012) Prediction of tenstile propreties of hybrid-natural fibre composites. Compos B Eng 43(2):793–796. https://doi.org/10.1016/j.compositesb.2011.08.023

    Article  Google Scholar 

  35. Venkateshwaran N, ElayaPerumal A, Alavudeen A, Thiruchitrambalam M (2011) Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Des 32(7):4017–4021. https://doi.org/10.1016/j.matdes.2011.03.002

    Article  Google Scholar 

  36. Faruka O, Bledzkia AK, Finkb H-P, Saind M (2012) Biocomposites reinforced with natural fibres: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  37. Belaadi A, Amroune S, Bourcha M (2020) Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. Int J Adv Manuf Technol 106:1753–1774. https://doi.org/10.1007/s00170-019-04628-8

    Article  Google Scholar 

  38. Baley C, Gomina M, Breard J, Bourmaud A, Davies P (2019) Variability of mechanical properties of flax fibres for composite reinforcement. A review. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111984

  39. Roy A, Chakraborty S, Prasad Kundu S, Kumar Basak R, Basu Majumder S, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228. https://doi.org/10.1016/j.biortech.2011.11.073

    Article  Google Scholar 

  40. Vijaya Ramnath B, Manickavasagam VM, Elanchezhian C, Vinodh Krishna C, Karthik S, Saravanan K (2014) Determination of mechanical properties of intra-layer abaca–jute–glass fiber reinforced composite. Mater Des 60:643–652. https://doi.org/10.1016/j.matdes.2014.03.061

    Article  Google Scholar 

  41. Palani Kumar K, Shadrach Jeya Sekaran A (2014) Some natural fibers used in polymer composites and their extraction processes: a review. J Reinf Plast Compos 33:1879–1892. https://doi.org/10.1177/0731684414548612

    Article  Google Scholar 

  42. Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: statistical approach. Compos Part B106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033

    Article  Google Scholar 

  43. Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: influence of glass fiber hybridization. Mater Des 64:194–202. https://doi.org/10.1016/j.matdes.2014.07.058

    Article  Google Scholar 

  44. Mirbagheri J, Tajvidi M, Ghasemi I, Hermanson JC (2007) Prediction of the elastic modulus of wood flour/kenaf fibre/polypropylene hybrid composites. Iran Polym J 16:271–278

    Google Scholar 

  45. Suresh kumar SM, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69. https://doi.org/10.1016/j.matdes.2014.02.013

    Article  Google Scholar 

  46. Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812. https://doi.org/10.1016/j.apsusc.2013.12.054

    Article  Google Scholar 

  47. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B 40:601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  Google Scholar 

  48. de Albuquerque AC, Joseph K, Hecker de Carvalho L, d’Almeida JRM (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos Sci Technol 60:833–844. https://doi.org/10.1016/S0266-3538(99)00188-8

    Article  Google Scholar 

  49. Salman SD, Leman Z, Sultan MTH, Ishak MR, Cardona F (2016) The effects of orientation on the mechanical and morphological properties of woven kenaf-reinforced poly vinyl butyral film. Int J Poly Sci 11:1167–1188

    Google Scholar 

  50. Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal J-F (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement 45:344–353. https://doi.org/10.1016/j.measurement.2011.11.011

    Article  Google Scholar 

  51. Aouici H, Bouchelaghem H, Yallese MA, Elbah M, Fnides B (2014) Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int J Adv Manuf Technol 73:1775–1788. https://doi.org/10.1007/s00170-014-5950-0

    Article  Google Scholar 

  52. Nejad SJH, Hasanzadeh R, Doniavi A, Modanloo V (2017) Finite element simulation analysis of laminated sheets in deep drawing process using response surface method. Int J Adv Manuf Technol 93:3245–3259. https://doi.org/10.1007/s00170-017-0780-5

    Article  Google Scholar 

  53. Elbah M, Yallese MA, Aouici H, Mabrouki T, Rigal J-F (2013) Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46:304–3056. https://doi.org/10.1016/j.measurement.2013.06.018

    Article  Google Scholar 

  54. Aouici H, Elbah M, Benkhelladi A, Fnides B, Boulanouar L, Athmane Yalles M (2019) Comparison on various machinability aspects between mixed and reinforced ceramics when machining hardened steels. Mech Ind 20:109–124. https://doi.org/10.1051/meca/2018052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Laouici.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkhelladi, A., Laouici, H. & Bouchoucha, A. Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. Int J Adv Manuf Technol 108, 895–916 (2020). https://doi.org/10.1007/s00170-020-05427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05427-2

Keywords

Navigation