Skip to main content
Log in

The heat partition into cutting tool at tool-chip contact interface during cutting process: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal load on cutting tool has a noteworthy influence on tool wear, tool life and machined surface quality. The heat partition coefficient into cutting tool characterizes the proportion of cutting heat flowing into it. This article provides an overview of the determining methods and influencing factors on the heat partition. Analytical modelling and hybrid FEM-experimental method are principal methods for identifying heat partition. The analytical models include uniform distribution and non-uniform distribution heat partition models. By reviewing influencing factors on the heat partition, it is found that thermal conductivities of workpiece and cutting tool, cutting speed and machining processes have greater influence on the heat partition compared with other influencing factors. The current researches on the determination of heat partition into cutting tool regard the tool-chip contact interfaces as perfect contact but not reveal true nature of the contact interface. The true contact only at the asperities at the tool-chip interface is observed through microscopic inspection. Oxide layer is generated on TiAlN coated tool rake face. Therefore, further research for the heat partition should consider the thermal contact resistance due to the non-perfect contact at tool-chip interface and the oxide layer generated on tool rake face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Arrazola PJ, Arriola I, Davies MA (2009) Analysis of the influence of tool type, coatings, and machinability on the thermal fields in orthogonal machining of AISI 4140 steels. CIRP Ann 58(1):85–88

    Article  Google Scholar 

  2. Cui D, Zhang DH, Wu BH, Luo M (2017) An investigation of temperature and heat partition on tool-chip interface in milling of difficult-to-machine materials. Procedia CIRP 58:49–54

    Article  Google Scholar 

  3. Lazoglu L, Altinas Y (2002) Prediction of tool and chip temperature in continuous metal cutting and milling. Int J Mach Tools Manuf 42:1011–1022

    Article  Google Scholar 

  4. Saez-de-Buruaga M, Soler D, Aristimuño PX, Esnaola JA, Arrazola PJ (2018) Determining tool/chip temperatures from thermography measurements in metal cutting. Appl Therm Eng 145:305–314

    Article  Google Scholar 

  5. Jawahir IS, Brinksmeier E, M’saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayala AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann 60(2):603–626

    Article  Google Scholar 

  6. Wang XZ, Yu TB, Sun X, Shi Y, Wang WS (2016) Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition. Int J Adv Manuf Technol 84(5-8):915–927

    Google Scholar 

  7. Puls H, Klocke F, Veselovac D (2016) FEM-based prediction of heat partition in dry metal cutting of AISI 1045. Int J Adv Manuf Technol 86(1-4):737–745

    Article  Google Scholar 

  8. Sölter J, Gulpak M (2012) Heat partitioning in dry milling of steel. CIRP Ann 61(1):87–90

    Article  Google Scholar 

  9. Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7-8):931–942

    Article  Google Scholar 

  10. Rech J (2006) Influence of cutting tool coatings on the tribological phenomena at the tool-chip interface in orthogonal dry turning. Surf Coat Technol 200(16-17):5132–5139

    Article  Google Scholar 

  11. Bhirud NL, Gawande RR (2017) Measurement and prediction of cutting temperatures during dry milling: review and discussions. J Braz Soc Mech Sci 39(12):5135–5158

    Article  Google Scholar 

  12. Shaw MC (1996) Energy conversion in cutting and grinding. CIRP Ann 45(1):101–104

    Article  Google Scholar 

  13. García E, Méresse D, Pombo I, Harmand H, Sánchez JA (2014) Identification of heat partition in grinding related to process parameters, using the inverse heat flux conduction model. Appl Therm Eng 66(1-2):122–130

    Article  Google Scholar 

  14. Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. CIRP Ann 56(1):117–122

    Article  Google Scholar 

  15. Abukhshim NA, Mativenga PT, Sheikh MA (2005) Investigation of heat partition in high speed turning of high strength alloy steel. Int J Mach Tools Manuf 45(15):1687–1695

    Article  Google Scholar 

  16. Grzesik W, Nieslony P (2003) A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. Int J Mach Tools Manuf 43(13):1311–1317

    Article  Google Scholar 

  17. Loewen EG (1954) On the analysis of cutting-tool temperatures. Tras ASME 76:217

    Google Scholar 

  18. Shaw MC, Cookson JO (2005) Metal cutting principles. Oxford University Press, New York

    Google Scholar 

  19. Reznikov AN, Reznikov AN (1981) Thermophysical aspects of metal cutting processes. Mashinostroenie, Moscow, p 212

    Google Scholar 

  20. Kato T, Fujii H (1999) Energy partition in conventional surface grinding. J Mech Sci Technol 121(3):393–398

    Google Scholar 

  21. Molinari A, Cheriguene R, Miguelez H (2012) Contact variables and thermal effects at the tool-chip interface in orthogonal cutting. Int J Solids Struct 49(26):3774–3796

    Article  Google Scholar 

  22. Liljerehn A, Kalhori V, Lundblad M (2009) Experimental studies and modeling of heat generation in metal machining. Mach Sci And Technol 13(4):488–515

    Article  Google Scholar 

  23. Cakir E, Ozlu E, Bakkal M, Budak E (2018) Investigation of temperature distribution in orthogonal cutting through dual-zone contact model on the rake face. Int J Adv Manuf Technol 96(1-4):81–89

    Article  Google Scholar 

  24. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process-Part II: temperature rise distribution due to frictional heat source at the tool-chip interface. Int J Mech Sci 43(1):57–88

    Article  MATH  Google Scholar 

  25. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process-part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. Int J Mech Sci 43(1):89–107

    Article  MATH  Google Scholar 

  26. Zhang JJ, Liu ZQ, Du J (2017) Prediction of cutting temperature distributions on rake face of coated cutting tools. Int J Adv Manuf Technol 91(1-4):49–57

    Article  Google Scholar 

  27. Du J, Zhang JJ, Wang LG (2018) Heat partition and rake face temperature in the machining of H13 steel with coated cutting tools. Int J Adv Manuf Technol 94(9-12):3691–3702

    Article  Google Scholar 

  28. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7-8):782–800

    Article  Google Scholar 

  29. Komanduri R, Hou ZB (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34(10):653–682

    Article  Google Scholar 

  30. Ning JQ, Liang SY (2019) A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int J Adv Manuf Technol 102(9-12):3109–3119

    Article  Google Scholar 

  31. Blok HP (1937) Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proc Inst Mech Eng 2:222–235

    Google Scholar 

  32. Jiang FL, Liu ZQ, Yang FZ, Zhong ZL, Sun SF (2018) Investigations on tool temperature with heat conduction and heat convection in high-speed slot milling of Ti6Al4V. Int J Adv Manuf Technol 96(5-8):1847–1858

    Article  Google Scholar 

  33. Jaeger JC (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc NSW 76:203–224

    Google Scholar 

  34. List G, Sutter G, Bouthiche A (2012) Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear. Int J Mach Tools Manuf 54:1–9

    Article  Google Scholar 

  35. Gecim B, Winer WO (1985) Transient temperatures in the vicinity of an asperity contact. J Tribol 107(3):333–341

    Article  Google Scholar 

  36. Grzesik W (2017) Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier

  37. Akbar F, Mativenga PT, Sheikh MA (2007) An investigation of the tool-chip interface temperature and heat partition in high-speed machining of AISI/SAE 4140 steel with TiN-coated tool. Proc 35th Int MATADOR Conf Springer London, pp 215–218

  38. Akbar F, Mativenga PT, Sheikh MA (2009) Predictive modelling of average heat partition in high speed machining of AISI/SAE 4140 steel. Int J Mach Mach Mater 5(2-3):135–154

    Google Scholar 

  39. Akbar F, Mativenga PT, Sheikh MA (2010) Prediction of heat partition in metal cutting: a state-of-the-art review of conventional to high speed machining. In: Davim JP (ed) Metal cutting research advances. Nova Science Publishers, New York, pp 23–75

    Google Scholar 

  40. Chao BT (1955) Temperature distribution at the tool-chip interface in metal cutting. Trans ASME 77:1107

    Google Scholar 

  41. Ueda T, Sato M, Nakayama K (1998) The temperature of a single crystal diamond tool in turning. CIRP Ann 47(1):41–44

    Article  Google Scholar 

  42. Huang Y, Liang SY (2005) Cutting temperature modeling based on non-uniform heat intensity and partition ratio. Mach Sci And Technol 9(3):301–323

    Article  Google Scholar 

  43. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process-part I: predictions of tool forces, stresses, and temperature distributions. J Mech Sci Technol 128(2):435–444

    Google Scholar 

  44. Aydın M (2016) Cutting temperature analysis considering the improved Oxley’s predictive machining theory. J Braz Soc Mech Sci 38(8):2435–2448

    Article  Google Scholar 

  45. Artozoul J, Lescalier C, Dudzinski D (2015) Experimental and analytical combined thermal approach for local tribological understanding in metal cutting. Appl Therm Eng 89:394–404

    Article  Google Scholar 

  46. Li LW, Li B, Ehmann KF, Li XC (2013) A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling. Int J Mach Tools Manuf 70:70–87

    Article  Google Scholar 

  47. Fahad M, Mativenga PT, Sheikh MA (2012) Critical design factors for multi-layer coating systems that influence heat partition in the secondary shear deformation zone and machining performance. Proc Inst Mech Eng B J Eng Manuf 226(6):1071–1085

    Article  Google Scholar 

  48. Fahad M, Mativenga PT, Sheikh MA (2013) On the contribution of primary deformation zone-generated chip temperature to heat partition in machining. Int J Adv Manuf Technol 68(1-4):99–110

    Article  Google Scholar 

  49. Ng EG, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39(6):885–903

    Article  Google Scholar 

  50. Casto SL, Valvo EL, Micari F (1989) Measurement of temperature distribution within tool in metal cutting. Experimental tests and numerical analysis. J Mech Work Technol 20:35–46

    Article  Google Scholar 

  51. Lei S, Shin YC, Incropera FP (2005) Thermo-mechanical modeling of orthogonal machining process by finite element analysis. Int J Mach Tools Manuf 39(5):731–750

    Article  Google Scholar 

  52. Xie LJ, Schmidt J, Schmidt C, Biesinger F (2005) 2D FEM estimate of tool wear in turning operation. Wear 258(10):1479–1490

    Article  Google Scholar 

  53. Arrazola PJ, Ugarte D, Dominguez X (2008) A new approach for the friction identification during machining through the use of finite element modeling. Int J Mach Tools Manuf 48(2):173–183

    Article  Google Scholar 

  54. Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci And Technol 11(3):367–390

    Google Scholar 

  55. Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105(1-2):95–109

    Article  Google Scholar 

  56. Shet C, Deng X, Bayoumi AE (2003) Finite element simulation of high-pressure water-jet assisted metal cutting. Int J Mech Sci 45(6-7):1201–1228

    Article  Google Scholar 

  57. Shi G, Deng X, Shet C (2002) A finite element study of the effect of friction in orthogonal metal cutting. Finite Elem Anal Des 38(9):863–883

    Article  MATH  Google Scholar 

  58. Shet C, Deng X (2003) Residual stresses and strains in orthogonal metal cutting. Int J Mach Tools Manuf 43(6):573–587

    Article  Google Scholar 

  59. Shi J, Liu CR (2006) On predicting chip morphology and phase transformation in hard machining. Int J Adv Manuf Technol 27(7-8):645–654

    Article  Google Scholar 

  60. Shi J, Liu CR (2005) On predicting softening effects in hard turned surfaces-part II: finite element modeling and verification. J Mech Sci Technol 127(3):484–491

    Google Scholar 

  61. Liu K, Melkote SN (2006) Material strengthening mechanisms and their contribution to size effect in micro-cutting. J Mech Sci Technol 128(3):730–738

    Google Scholar 

  62. Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. J Mech Sci Technol 126(4):849–857

    Google Scholar 

  63. Li K, Gao XL, Sutherland JW (2002) Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J Mater Process Technol 127(3):309–324

    Article  Google Scholar 

  64. Mabrouki T, Rigal JF (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176(1-3):214–221

    Article  Google Scholar 

  65. Nasr MNA, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tools Manuf 47(2):401–411

    Article  Google Scholar 

  66. Ghani MU, Abukhshim NA, Sheikh MA (2008) An investigation of heat partition and tool wear in hard turning of H13 tool steel with CBN cutting tools. Int J Adv Manuf Technol 39(9-10):874–888

    Article  Google Scholar 

  67. Akbar F, Mativenga PT, Sheikh MA (2008) An evaluation of heat partition in the high-speed turning of AISI/SAE 4140 steel with uncoated and TiN-coated tools. Proc Inst Mech Eng B J Eng Manuf 222(7):759–771

    Article  Google Scholar 

  68. Akbar F, Mativenga PT, Sheikh MA (2010) An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int J Adv Manuf Technol 46(5-8):491–507

    Article  Google Scholar 

  69. Akbar F, Mativenga PT, Sheikh MA (2009) On the heat partition properties of (Ti, Al) N compared with TiN coating in high-speed machining. Proc Inst Mech Eng B J Eng Manuf 223(4):363–375

    Article  Google Scholar 

  70. Mabrouki T, Courbon C, Fabre D, Arrieta I, Arrazola PJ, Rech J (2017) Influence of microstructure on chip formation when broaching ferritic-pearlitic steels. Procedia CIRP 58:43–48

    Article  Google Scholar 

  71. Akbar F, Mativenga P, Sheikh M (2013) Heat partition-based design of hard coatings in high-speed machining. Int J Mach Mach Mater 14(4):363–386

    Google Scholar 

  72. Yen YC, Jain A, Chigurupati P, Wu WT, Altan T (2004) Computer simulation of orthogonal cutting using a tool with multiple coatings. Mach Sci And Technol 8(2):305–326

    Article  Google Scholar 

  73. Balaji AK, Mohan VS (2002) An ‘effective cutting tool thermal conductivity’ based model for tool-chip contact in machining with multi-layer coated cutting tools. Mach Sci And Technol 6(3):415–436

    Article  Google Scholar 

  74. Schulz S, Brack S, Terzis A, Wolferdorf JV, Ott P (2016) On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals. Exp Thermal Fluid Sci 70:196–207

    Article  Google Scholar 

  75. Bouzakis KD, Hadjiyiannis S, Skordaris G, Mirisidis I, Michailidis N, Efstathiou K, Erkens G, Rambadt S, Wirth I (2004) The effect of coating thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts. Surf Coat Technol 177:657–664

    Article  Google Scholar 

  76. Rech J, Battaglia JL, Moisan A (2005) Thermal influence of cutting tool coatings. J Mater Process Technol 159(1):11

    Article  Google Scholar 

  77. Childs THC, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining: theory and applications. Butterworth-Heinemann

  78. Grzesik W, Nieslony P (2003) Thermophysical-property-based selection of tool protective coatings for dry machining of steels. J Manuf Sci Eng 125(4):689–695

    Article  Google Scholar 

  79. Grzesik W, Van Luttervelt CA (2005) Analytical models based on composite layer for computation of tool-chip interface temperatures in machining steels with multilayer coated cutting tools. CIRP Ann 54(1):91–94

    Article  Google Scholar 

  80. Ye RQ, Smugeresky JE, Zheng BL, Zhou YZ, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS® process. Mater Sci Eng A 428(1-2):47–53

    Article  Google Scholar 

  81. Casalino G, Guglielmi P, Lorusso VD, Mortello M, Peyre P, Sorgente D (2017) Laser offset welding of AZ31B magnesium alloy to 316 stainless steel. J Mater Process Technol 242:49–59

    Article  Google Scholar 

  82. Egana A, Rech J, Arrazola PJ (2012) Characterization of friction and heat partition coefficients during machining of a TiAl6V4 titanium alloy and a cemented carbide. Tribol Trans 55(5):665–676

    Article  Google Scholar 

  83. Zemzemi F, Rech J, Salem WB, Doqui A, Kapsa P (2014) Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Adv Manuf Sci Technol 38(1):5–22

    Google Scholar 

  84. Smith GT (1989) Advanced machining: the handbook of cutting technology. IFS

  85. Mondelin A, Claudin C, Rech J, Dumont F (2011) Effects of lubrication mode on friction and heat partition coefficients at the tool-work material interface in machining. Tribol Trans 54(2):247–255

    Article  Google Scholar 

  86. Rech J, Arrazola PJ, Claudin C, Courbon C, Pusavec F, Kopac J (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann 62(1):79–82

    Article  Google Scholar 

  87. Al Sofyani S, Marinescu ID (2017) Analytical modeling of the thermal aspects of metalworking fluids in the milling process. Int J Adv Manuf Technol 92(9-12):3953–3966

    Article  Google Scholar 

  88. Yen YC, Söhner J, Lilly B, Altan T (2004) Estimation of tool wear in orthogonal cutting using the finite element analysis. J Mater Process Technol 146(1):82–91

    Article  Google Scholar 

  89. Lotfi M, Amini S, Aghaei M (2018) Tool wear modeling in rotary turning modified by ultrasonic vibration. Simul Model PractTheory 87:226–238

    Article  Google Scholar 

  90. Lotfi M, Amini S, Aghaei M (2018) Tool wear prediction and surface improvement in vibration cutting. Tribol T 61(3):414–423

    Article  Google Scholar 

  91. Norouzifard V, Hamedi M (2014) Experimental determination of the tool-chip thermal contact conductance in machining process. Int J Mach Tools Manuf 84:45–57

    Article  Google Scholar 

  92. Courbon C, Mabrouki T, Rech J, Mazuyer D, D’Eramo E (2013) On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: formation mechanisms and influence on the cutting process. Appl Therm Eng 50(1):1311–1325

    Article  Google Scholar 

  93. Madhusudana CV, Madhusudana CV (1996) Thermal contact conductance. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  94. Klocke F, Kuchle A (2011) Manufacturing processes 1. Springer, Berlin

    Book  Google Scholar 

  95. Hao GC, Liu ZQ (2019) Experimental study on the formation of TCR and thermal behavior of hard machining using TiAlN coated tools. Int J Heat Mass Transf 140:1–11

    Article  Google Scholar 

  96. Hao GC, Liu ZQ (2020) Thermal contact resistance enhancement with aluminum oxide layer generated on TiAlN-coated tool and its effect on cutting performance for H13 hardened steel. Surf Coat Technol 125436

  97. M’Saoubi R, Chandrasekaran H (2005) Innovative methods for the investigation of tool-chip adhesion and layer formation during machining. CIRP Ann 54(1):59–62

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (91860207). This work was also supported by grants from Taishan Scholar Foundation, the National Key Research and Development Program of China (2019YFB2005401), and Shandong Provincial Natural Science Foundation of China (ZR2019MEE073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanqiang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, G., Liu, Z. The heat partition into cutting tool at tool-chip contact interface during cutting process: a review. Int J Adv Manuf Technol 108, 393–411 (2020). https://doi.org/10.1007/s00170-020-05404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05404-9

Keywords

Navigation