Skip to main content
Log in

Dislocation behavior in nickel and iron during laser shock-induced plastic deformation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser shock peening is one of the most effective surface strengthening techniques, which uses laser shock-induced plastic deformation to optimize surface stress state and microstructures of target material. In this paper, dislocation dynamics simulation was used to investigate laser shock induced ultra-high strain rate plastic deformation of face-centered cubic (FCC) nickel and body-centered cubic (BCC) iron. Molecular dynamics was employed to calculate dislocation mobility. Based on the obtained dislocation mobility coefficient, dislocation dynamics models of nickel and iron were established. Results show that the velocity of dislocation motion increases as temperature decreases. Under ultra-high strain rate deformation, dislocation density of nickel increases while dislocation density of iron decreases as temperature rises. Moreover, iron exhibits thermal softening while nickel exhibits thermal hardening under laser shock loading. Plastic deformation dominated by dislocations is sensitive to loading direction, depending on the Schmidt factor of the slip system. The ultra-high strain rate induced by laser shock can effectively increase dislocation density by promoting dislocation multiplication and suppressing dislocation annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Peyre P, Fabbro R, Merrien P et al (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210(1–2):102–113

    Article  Google Scholar 

  2. Sanchez-Santana U, Rubio-Gonzalez C, Gomez-Rosas G et al (2006) Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing. Wear 260(7–8):847–854

    Article  Google Scholar 

  3. Ebrahimi M, Amini S, Mahdavi SM (2017) The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel. Int J Adv Manuf Technol 88(5–8):1557–1565

    Article  Google Scholar 

  4. Zepeda-Ruiz LA, Stukowski A, Oppelstrup T et al (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550(7677):492

    Article  Google Scholar 

  5. Bisht A, Neogi A, Mitra N et al (2019) Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves:1–15

  6. Kattoura M, Shehadeh MA (2014) On the ultra-high-strain rate shock deformation in copper single crystals: multiscale dislocation dynamics simulations. Philos Mag Lett 94(7):415–423

    Article  Google Scholar 

  7. Shehadeh MA (2012) Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes. Philos Mag 92(10):1173–1197

    Article  Google Scholar 

  8. Shehadeh MA, Zbib HM (2016) On the homogeneous nucleation and propagation of dislocations under shock compression. Philos Mag 96(26):2752–2778

    Article  Google Scholar 

  9. Liu ZL, You XC, Zhuang Z (2008) A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper. Int J Solids Struct 45(13):3674–3687

    Article  MATH  Google Scholar 

  10. El Ters P, Shehadeh MA (2019) Modeling the temperature and high strain rate sensitivity in BCC iron: atomistically informed multiscale dislocation dynamics simulations. Int J Plast 112:257–277

    Article  Google Scholar 

  11. Hu J, Liu Z, Chen K et al (2017) Investigations of shock-induced deformation and dislocation mechanism by a multiscale discrete dislocation plasticity model. Comput Mater Sci 131:78–85

    Article  Google Scholar 

  12. Zhou W, Ren X, Ren Y et al (2017) Initial dislocation density effect on strain hardening in FCC aluminium alloy under laser shock peening. Philos Mag 97(12):917–929

    Article  Google Scholar 

  13. Liao Y, Ye C, Gao H et al (2011) Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: dislocation dynamic simulation and experiments. J Appl Phys 110(2):023518

    Article  Google Scholar 

  14. Liao Y, Cheng GJ (2013) Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning: multiscale dislocation dynamics simulation and experiments. Acta Mater 61(6):1957–1967

    Article  Google Scholar 

  15. Ye C, Liao Y, Suslov S et al (2014) Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Mater Sci Eng A 609:195–203

    Article  Google Scholar 

  16. Chang J, Cai W, Bulatov VV et al (2002) Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Comput Mater Sci 23(1–4):111–115

    Article  Google Scholar 

  17. Gilbert MR, Queyreau S, Marian J (2011) Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics. Phys Rev B 84(17):174103

    Article  Google Scholar 

  18. Olmsted DL, Hector LG Jr, Curtin WA et al (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 13(3):371

    Article  Google Scholar 

  19. Branício PS, Rino JP (2000) Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys Rev B 62(24):16950

    Article  Google Scholar 

  20. Mendelev MI, Han S, Srolovitz DJ et al (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83(35):3977–3994

    Article  Google Scholar 

  21. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012

    Article  MathSciNet  Google Scholar 

  22. Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC, Cai W, Florando JN, Hiratani M, Rhee M, Hommes G, Pierce TG, de la Rubia TD (2006) Dislocation multi-junctions and strain hardening. Nature 440(7088):1174–1178

    Article  Google Scholar 

  23. Arsenlis A, Cai W, Tang M et al (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553

    Article  Google Scholar 

  24. Bulatov V, Cai W, Fier J, et al. (2004) Scalable line dynamics in ParaDiS[C]//Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference. IEEE: 19

  25. Greer JR, Weinberger CR, Cai W (2008) Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater Sci Eng A 493(1–2):21–25

    Article  Google Scholar 

  26. Po G, Cui Y, Rivera D et al (2016) A phenomenological dislocation mobility law for bcc metals. Acta Mater 119:123–135

    Article  Google Scholar 

  27. Zaretsky EB, Kanel GI (2012) Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. J Appl Phys 112(7):073504

    Article  Google Scholar 

  28. Fan Z, Xiuguang H, Hua S et al (2015) High-power laser shock-induced dynamic fracture of aluminum and microscopic observation of samples[C]//EPJ Web of Conferences. EDP Sci 94:02008

    Google Scholar 

  29. Gurrutxaga-Lerma B, Shehadeh MA, Balint DS et al (2017) The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int J Plast 96:135–155

    Article  Google Scholar 

  30. Anderson PM, Hirth JP, Lothe J (2017) Theory of dislocations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  31. Wang ZQ, Beyerlein IJ, LeSar R (2009) Plastic anisotropy in fcc single crystals in high rate deformation. Int J Plast 25(1):26–48

    Article  MATH  Google Scholar 

  32. Hosseinzadeh DA (2015) Numerical modeling of plasticity in FCC crystalline materials using discrete dislocation dynamics. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  33. Cui YN, Lin P, Liu ZL et al (2014) Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int J Plast 55:279–292

    Article  Google Scholar 

  34. El-Awady JA (2015) Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat Commun 6:5926

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the projects supported by the National Natural Science Foundation of China (Grant No. 51975261), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160014), and the Innovation Team of Six Talents Peaks in Jiangsu Province (Grant No. 2019TD-KTHY-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Ren.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Ren, X., Yang, Y. et al. Dislocation behavior in nickel and iron during laser shock-induced plastic deformation. Int J Adv Manuf Technol 108, 1073–1083 (2020). https://doi.org/10.1007/s00170-019-04822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04822-8

Keywords

Navigation