Skip to main content
Log in

Dynamic error of CNC machine tools: a state-of-the-art review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The dynamic error of CNC machine tools, which often exceeds the quasi-static error at high-speed machining, becomes the main reason affecting the machining error of the sculptured surface parts. Although much research efforts have been dedicated to dynamic error, there is a lack of systematical summaries. In this review, firstly, the dynamic error is defined as the deviation of actual displacement of effector end of axis relative to reference displacement during feed motion. Secondly, according to the mechanical and control structure of the servo feed system, the dynamic error is divided into two components: dynamic error inside the servo loop (component 1) and dynamic error outside the servo loop (component 2). Based on the two components, the causes resulting in the dynamic error are analyzed from the points of view of the servo feed system itself and its input (setpoints). Thirdly, the basic strategies for reducing the dynamic error of individual axis, as well as for reducing the trajectory dynamic error by coordinating the dynamic error of individual axis, are summarized. Finally, the problems and future research directions on dynamic error are analyzed. It is concluded that resolving the contradiction between the setpoints and the servo feed system is still a great challenge for dynamic error in high-speed machining. To achieve high dynamic accuracy at high-speed machining, the control strategies on the dynamic error outside the servo loop should be further developed and integrated into dynamic error inside the servo loop-oriented control strategies. Meanwhile, the servo feed system itself and its input need to be investigated as a whole, so that the servo feed system of each axis can adapt to the differences and changes of the setpoints, and the differences in the servo dynamics of each axis can be considered in the setpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Huo F, Poo A-N (2013) Precision contouring control of machine tools. Int J Adv Manuf Technol 64:319–333

    Google Scholar 

  2. Bohez ELJ (2002) Compensating for systematic errors in 5-axis NC machining. Comput Aided Des 34(5):391–403. https://doi.org/10.1016/S0010-4485(01)00111-7

    Article  Google Scholar 

  3. Weekers WG, Schellekens PHJ (1995) Assessment of dynamic errors of CMMs for fast probing. CIRP Ann Manuf Technol 44(1):469–474

    Google Scholar 

  4. Ma J, Lu D, Zhao W (2015) Assembly errors analysis of linear axis of CNC machine tool considering component deformation. Int J Adv Manuf Technol 12:1–9

    Google Scholar 

  5. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tool Manu 95:20–38

    Google Scholar 

  6. Sartori S, Zhang GX (1995) Geometric error measurement and compensation of machines. CIRP Ann 44(2):599–609. https://doi.org/10.1016/S0007-8506(07)60507-1

    Article  Google Scholar 

  7. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  8. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann 57(2):660–675. https://doi.org/10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  9. Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124

    Google Scholar 

  10. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  11. Uriarte L, Zatarain M, Axinte D, Yagüe-Fabra J, Ihlenfeldt S, Eguia J, Olarra A (2013) Machine tools for large parts. CIRP Ann 62(2):731–750. https://doi.org/10.1016/j.cirp.2013.05.009

    Article  Google Scholar 

  12. Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. Ann CIRP 56(2):657–686

    Google Scholar 

  13. Schmitz TL, Ziegert JC, Canning JS, Zapata R (2008) Case study: a comparison of error sources in high-speed milling. Precis Eng 32:126–133

    Google Scholar 

  14. Kato N, Tsutsumi M, Sato R (2013) Analysis of circular trajectory equivalent to cone-frustum milling in five-axis machining centers using motion simulator. Int J Mach Tool Manu 64:1–11. https://doi.org/10.1016/j.ijmachtools.2012.07.013

    Article  Google Scholar 

  15. Z-y J, Ma J-w, D-n S, Wang F-j, Liu W (2018) A review of contouring-error reduction method in multi-axis CNC machining. Int J Mach Tools Manuf 125:34–54. https://doi.org/10.1016/j.ijmachtools.2017.10.008

    Article  Google Scholar 

  16. Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann Manuf Technol 60:779–796

    Google Scholar 

  17. Koren Y, Lo CC (1992) Advanced controllers for feed drives. Annals of the CIRP 41(2):689–698

    Google Scholar 

  18. Koren Y (1997) Control of machine tools. J Manuf Sci Eng Trans ASME 119(11):749–755

    Google Scholar 

  19. Ramesh R, Mannan MA, Poo AN (2005) Tracking and contour error control in CNC servo systems. Int J Mach Tool Manu 45:301–326

    Google Scholar 

  20. Tang L, Landers RG (2013) Multiaxis contour control—the state of the art. IEEE Trans Control Syst Technol 21(6):1997–2010

    Google Scholar 

  21. Liang T, Lu D, Yang X, Zhang J, Ma X, Zhao W (2016) Feed fluctuation of ball screw feed systems and its effects on part surface quality. Int J Mach Tool Manu 101:1–9

    Google Scholar 

  22. Kamalzadeh A, Erkorkmaz K (2007) Accurate tracking controller design for high speed drives. Int J Mach Tool Manu 47(9):1393–1400

    Google Scholar 

  23. Yang XJ, Lu D, Zhang J, Zhao WH (2015) Investigation of the displacement fluctuation of the linear motor feed system considering the linear encoder vibration. Int J Mach Tool Manu 98:33–40

    Google Scholar 

  24. Mutilba U, Gomez-Acedo E, Kortaberria G, Olarra A, Yagüe-Fabra JA (2017) Traceability of on-machine tool measurement: a review. Sensors 17:1–38

    Google Scholar 

  25. Schmitz T, Ziegert J (1999) Examination of surface location error due to phasing of cutter vibrations. Precis Eng 23(1):51–62. https://doi.org/10.1016/S0141-6359(98)00025-7

    Article  Google Scholar 

  26. Hu WX, Cao YL, Yang JX, Shang HC, Wang WB (2018) An error prediction model of NC machining process considering multiple error sources. Int J Adv Manuf Technol 94(5–8):1689–1698. https://doi.org/10.1007/s00170-016-9867-7

    Article  Google Scholar 

  27. Chiu GTC, Yao B (1997) Adaptive robust contour tracking of machine tool feed drive systems—a task coordinate frame approach. Paper presented at the Proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997

  28. Huang XY, Zhao F, Mei XS, Tao Y, Tao T, Shi H, Liu X (2019) A novel triple-stage friction compensation for a feed system based on electromechanical characteristics. Precis Eng J Int Soc Precis Eng Nanotechnol 56:113–122. https://doi.org/10.1016/j.precisioneng.2018.11.006

    Article  Google Scholar 

  29. Dong X, Okwudire CE (2018) An experimental investigation of the effects of the compliant joint method on feedback compensation of pre-sliding/pre-rolling friction. Precis Eng J Int Soc Precis Eng Nanotechnol 54:81–90. https://doi.org/10.1016/j.precisioneng.2018.05.004

    Article  Google Scholar 

  30. Liu WR, Ren F, Sun YW, Jiang SL (2018) Contour error pre-compensation for three-axis machine tools by using cross-coupled dynamic friction control. Int J Adv Manuf Technol 98(1–4):551–563. https://doi.org/10.1007/s00170-018-2189-1

    Article  Google Scholar 

  31. Lee W, Lee CY, Jeong YH, Min BK (2015) Friction compensation controller for load varying machine tool feed drive. Int J Mach Tool Manu 96:47–54. https://doi.org/10.1016/j.ijmachtools.2015.06.001

    Article  Google Scholar 

  32. Yang X, Lu D, Zhang J, Zhao W (2016) Analysis on steady-state vibration induced by backlash in machine tool rotary table. Proc Inst Mech Eng C J Mech Eng Sci 231(22):4163–4171. https://doi.org/10.1177/0954406216662086

    Article  Google Scholar 

  33. Shi S, Lin J, Wang X, Xu X (2015) Analysis of the transient backlash error in CNC machine tools with closed loops. Int J Mach Tools Manuf 93:49–60. https://doi.org/10.1016/j.ijmachtools.2015.03.009

    Article  Google Scholar 

  34. Zhao W, Zhang J, Liu H, Yang X (2013) New evaluation method on the precision of NC machine tools. Eng Sci 15(1):93–98

    Google Scholar 

  35. Slamani M, Mayer R, Balazinski M, Zargarbashi SHH, Engin S, Lartigue C (2010) Dynamic and geometric error assessment of an XYC axis subset on five-axis high-speed machine tools using programmed end point constraint measurements. Int J Adv Manuf Technol 50:1063–1073

    Google Scholar 

  36. Slamani M, Mayer R, Balazinski M (2013) Concept for the integration of geometric and servo dynamic errors for predicting volumetric errors in five-axis high-speed machine tools: an application on a XYC three-axis motion trajectory using programmed end point constraint measurements. Int J Adv Manuf Technol 65:1669–1679

    Google Scholar 

  37. Zhong L, Bi Q, Huang N, Wang Y (2018) Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. Int J Mach Tools Manuf 125:20–33

    Google Scholar 

  38. Heisel U, Gringel M (1996) Machine tool design requirements for high-speed machining. CIRP Ann 45(1):389–392. https://doi.org/10.1016/S0007-8506(07)63087-X

    Article  Google Scholar 

  39. Kono D, Weikert S, Matsubara A, Yamazaki K (2012) Estimation of dynamic mechanical error for evaluation of machine tool structures. Int J Autom Technol 6(2):147–153

    Google Scholar 

  40. Barre P-J, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42(3):275–293. https://doi.org/10.1007/s10846-004-4002-7

    Article  Google Scholar 

  41. Lim H, Seo J-W, Choi C-H (2001) Torsional displacement compensation in position control for machining centers. Control Eng Pract 9(1):79–87. https://doi.org/10.1016/S0967-0661(00)00076-9

    Article  Google Scholar 

  42. Zhu H, Fujimoto H (2015) Mechanical deformation analysis and high-precision control for ball-screw-driven stages. IEEE/ASME Trans Mechatron 20(2):956–966. https://doi.org/10.1109/TMECH.2014.2337933

    Article  Google Scholar 

  43. Sugie T, Iwasaki T, Nakagawa H, Kohda S (1999) Compensation for the exponential type lost motion to improve the contouring accuracy of NC machine tools. Paper presented at the IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), 29 Nov.-3 Dec. 1999

  44. Sugie T, Iwasaki T, Nakagawa T, Kohda T (2000) Compensation for position-varying lost motion to improve the contouring accuracy of NC machine tools. Paper presented at the 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies, 22–28 Oct. 2000

  45. Kamalzadeh A, Gordon DJ, Erkorkmaz K (2010) Robust compensation of elastic deformations in ball screw drives. Int J Mach Tools Manuf 50(6):559–574. https://doi.org/10.1016/j.ijmachtools.2010.03.001

    Article  Google Scholar 

  46. Huang H-W, Tsai M-S, Huang Y-C (2018) Modeling and elastic deformation compensation of flexural feed drive system. Int J Mach Tools Manuf 132:96–112. https://doi.org/10.1016/j.ijmachtools.2018.05.002

    Article  Google Scholar 

  47. Wu N, Hu R, Sun Q (2004) Influence of rigidity of feed system with ball screw in NC lathe on positioning precision. Eng Sci 6(9):46–49

    Google Scholar 

  48. Dong C, Zhang C, Wang B, Zhang G (2002) Prediction and compensation of dynamic errors for coordinate measuring machines. J Manuf Sci Eng Trans Asme 124(3):509–514

    Google Scholar 

  49. Weekers W (1996) Compensation for dynamic errors of coordinate measuring machines. Eindhoven University of Technology

  50. Ahmadian MT, Vossoughi GR, Ramezani S (2007) Dynamic error analysis of gantry type coordinate measuring machines. Sci Iran 14(3):278–290

    Google Scholar 

  51. Bringmann B, Maglie P (2009) A method for direct evaluation of the dynamic 3D path accuracy of NC machine tools. CIRP Ann Manuf Technol 58:343–346

    Google Scholar 

  52. Parenti P, Albertelli P, Cau N, Bianchi G, Monno M (2011) A mechatronic study on a model-based compensation of inertial vibration in high speed machine tool. J Mach Eng 11(4):91–104

    Google Scholar 

  53. Knapp W, Weikert S (1999) Testing the contouring performance in 6 degrees of freedom. Ann CIRP 48:433–436

    Google Scholar 

  54. Ansoategui I, Campa FJ, López C, Díez M (2017) Influence of the machine tool compliance on the dynamic performance of the servo drives. Int J Adv Manuf Technol 90(9):2849–2861. https://doi.org/10.1007/s00170-016-9616-y

    Article  Google Scholar 

  55. Thoma SM, Haas T, Nguyen H, Weikert S, Wegener K (2015) In- and cross-talk evaluation of different machine concepts. Paper presented at the 11th international conference and exhibition on laser metrology, coordinate measuring machine and machine tool performance, LAMDAMAP 2015, Huddersfield, UK, March 17–18, 2015

  56. Nguyen MH, Weikert S, Wegener K (2012) Evaluation method of acceleration correlated position errors in machine tools. Br Med J 1(5):1327–1328

    Google Scholar 

  57. Zatarain M, Ruiz de Argandoña I, Illarramendi A, Azpeitia JL, Bueno R (2005) New control techniques based on state space observers for improving the precision and dynamic behaviour of machine tools. CIRP Ann 54(1):393–396. https://doi.org/10.1016/S0007-8506(07)60130-9

    Article  Google Scholar 

  58. Mu YH, Ngoi BKA (1999) Dynamic error compensation of coordinate measuring machines for high-speed measurement. Int J Adv Manuf Technol 15:810–814

    Google Scholar 

  59. ISO (2009) Test code for machine tools. Part 8. Determination of vibration levels. ISO/DIS 230-8. Geneva

  60. Andolfatto L, Lavernhe S, Mayer JRR (2011) Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool. Int J Mach Tool Manu 51:787–796

    Google Scholar 

  61. Kono D, Matsubara A, Nagaoka K, Yamazaki K (2012) Analysis method for investigating the influence of mechanical components on dynamic mechanical error of machine tools. Precis Eng 36(3):477–484. https://doi.org/10.1016/j.precisioneng.2012.02.006

    Article  Google Scholar 

  62. Pritschow G (1996) On the influence of the velocity gain factor on the path deviation. CIRP Ann 45(1):367–371. https://doi.org/10.1016/S0007-8506(07)63082-0

    Article  Google Scholar 

  63. Koren Y (1980) Cross-coupled biaxial computer control for manufacturing systems. ASME Trans J Dyn Syst Meas Control 102:265–272

    MATH  Google Scholar 

  64. Tomizuka M (1987) Zero phase error tracking algorithm for digital control. ASME Trans J Dyn Syst Meas Control 109(1):65–68

    MATH  Google Scholar 

  65. Funahashi Y, Yamada M (1993) Zero phase error tracking controllers with optimal gain characteristics. J Dyn Syst Meas Control Trans Asme 115(3):311–318

    MATH  Google Scholar 

  66. Rahaman M, Seethaler R, Yellowley I (2015) A new approach to contour error control in high speed machining. Int J Mach Tool Manu 88:42–50

    Google Scholar 

  67. Li XW, Zhang J, Zhao WH, Lu BH (2016) A zero phase error tracking based path pre-compensation method for high speed machining. J Mech Eng Sci 230(2):230–239

    Google Scholar 

  68. Chen X, Liu C, Zhou N, Wang B (2014) Controller design based on ZPETC-FF and DOB for precision motion platform. J Harbin Inst Technol 46(1):1–6

    MathSciNet  Google Scholar 

  69. Wang L, Li X (2014) Zero phase adaptive robust control of direct drive XY table. J Shenyang Univ Technol 36(2):121–126

    MathSciNet  Google Scholar 

  70. Smith DA (1999) Wide bandwidth control of high-speed milling machine feed drives. University of Florida

  71. Chen YC, Tlusty J (1995) Effect of low friction guideways and leadscrew flexibility on dynamics of high-speed machines. CIRP Ann Manuf Technol 44(1):353–356

    Google Scholar 

  72. Erkorkmaz K, Kamalzadeh A (2007) Compensation of axial vibrations in ball screw drives. CIRP Ann Manuf Technol 56(1):373–378

    Google Scholar 

  73. Erkorkmaz K, Kamalzadeh A (2006) High bandwidth control of ball screw drives. CIRP Ann Manuf Technol 55(1):393–398

    Google Scholar 

  74. Altintas Y, Erkorkmaz K, Zhu WH (2000) Sliding mode controller design for high speed feed drives. CIRP Ann Manuf Technol 49:265–270

    Google Scholar 

  75. Okwudire C, Altintas Y (2009) Minimum tracking error control of flexible ball screw drives using a discrete-time sliding mode controller. ASME Trans J Dyn Syst Meas Control 131:051006

    Google Scholar 

  76. Pritschow G, Croon N (2013) Ball screw drives with enhanced bandwidth by modification of the axial bearing. CIRP Ann Manuf Technol 62:383–386

    Google Scholar 

  77. Verl A, Frey S (2012) Improvement of feed drive dynamics by means of semi-active damping. CIRP Ann Manuf Technol 61(1):351–354

    Google Scholar 

  78. Sun Z, Pritschow G, Lechler A (2016) Enhancement of feed drive dynamics using additional table speed feedback. CIRP Ann Manuf Technol 65(1):357–360

    Google Scholar 

  79. Sun Z, Zahn P, Verl A, Lechler A (2017) A new control principle to increase the bandwidth of feed drives with large inertia ratio. Int J Adv Manuf Technol 91:1747–1752

    Google Scholar 

  80. Sun Z, Pritschow G, Zahn P, Lechler A (2018) A novel cascade control principle for feed drives of machine tools. CIRP Ann Manuf Technol

  81. Sencer B, Dumanli A (2017) Optimal control of flexible drives with load side feedback. CIRP Ann Manuf Technol 66(1):357–360

    Google Scholar 

  82. Liu H, Zhang J, Zhao W (2017) An intelligent non-collocated control strategy for ball-screw feed drives with dynamic variations. Engineering 3:107

    Google Scholar 

  83. Dumanli A, Sencer B (2018) Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback. Precis Eng J Int Soc Precis Eng Nanotechnol 54:254–268. https://doi.org/10.1016/j.precisioneng.2018.06.002

    Article  Google Scholar 

  84. FANUC FANUC AC Servo Motor αi series, FANUC AC Servo Motor βi series, FANUC Linear Motor LiS series, FANUC Synchronous Built-In Servo Motor DiS series parameter manual. B-65270EN/07 edn.

  85. HEIDENHAIN (2013) Dynamic precision—machining dynamically and with high accuracy

  86. van Loon SJLM, Hunnekens BGB, Simon AS, van de Wouw N, Heemels WPMH (2018) Bandwidth-on-demand motion control. IEEE Trans Control Syst Technol 26(1):265–273

    Google Scholar 

  87. Wang L, Liu H, Yang L, Zhang J, Zhao W, Lu B (2015) The effect of axis coupling on machine tool dynamics determined by tool deviation. Int J Mach Tool Manu 88:71–81

    Google Scholar 

  88. Matsubara A, Nagaoka K, Fujita T (2011) Model-reference feedforward controller design for high-accuracy contouring control of machine tool axes. CIRP Ann 60(1):415–418. https://doi.org/10.1016/j.cirp.2011.03.029

    Article  Google Scholar 

  89. Denkena B, Overmeyer L, Litwinski KM, Peters R (2014) Compensation of geometrical deviations via model based-observers. Int J Adv Manuf Technol 73(5):989–998. https://doi.org/10.1007/s00170-014-5885-5

    Article  Google Scholar 

  90. Weikert S (2004) R-test, a new device for accuracy measurements on five axis machine tools. CIRP Ann 53(1):429–432. https://doi.org/10.1016/S0007-8506(07)60732-X

    Article  Google Scholar 

  91. Steinlin M, Weikert S, Wegener K (2010) Open loop inertial cross-talk compensation based on measurement data. Paper presented at the 25th annual meeting of the American Society for Precision Engineering, ASPE 2010, Atlanta, GA, United States, October 31, 2010 - November 4, 2010

  92. Keck A, Sawodny O, Gronle M, Haist T, Osten W (2018) Model-based compensation of dynamic errors in measuring machines and machine tools. IEEE ASME Trans Mechatron 23(5):2252–2262. https://doi.org/10.1109/tmech.2018.2868012

    Article  Google Scholar 

  93. Bosetti P, Bertolazzi E (2014) Feed-rate and trajectory optimization for CNC machine tools. Robot Comput Integr Manuf 30(6):667–677. https://doi.org/10.1016/j.rcim.2014.03.009

    Article  Google Scholar 

  94. Dong J, Ferreira PM, Stori JA (2007) Feed-rate optimization with jerk constraints for generating minimum-time trajectories. Int J Mach Tools Manuf 47(12):1941–1955. https://doi.org/10.1016/j.ijmachtools.2007.03.006

    Article  Google Scholar 

  95. Weck M, Ye G (1990) Sharp corner tracking using the IKF control strategy. CIRP Ann Manuf Technol 39(1):473–441

    Google Scholar 

  96. Yang DCH, Kong T (1994) Parametric interpolator versus linear interpolator for precision CNC machining. Comput Aided Des 26(3):225–234. https://doi.org/10.1016/0010-4485(94)90045-0

    Article  MATH  Google Scholar 

  97. Shpitalni M, Koren Y, Lo CC (1994) Realtime curve interpolators. Comput Aided Des 26(11):832–838

    MATH  Google Scholar 

  98. Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. Int J Mach Tools Manuf 41(9):1323–1345. https://doi.org/10.1016/S0890-6955(01)00002-5

    Article  Google Scholar 

  99. Timar SD, Farouki RT (2008) Time-optimal traversal of curved paths by Cartesian CNC machines under both constant and speed-dependent axis acceleration bounds. Robot Comput Integr Manuf 24(1):16–31. https://doi.org/10.1016/j.rcim.2006.06.002

    Article  Google Scholar 

  100. Bedi S (1993) Advanced interpolation techniques for N.C. machines. J Manuf Sci Eng 115(3):329. https://doi.org/10.1115/1.2901668

    Article  Google Scholar 

  101. Sata T, Kimura F, Okada N, Hosaka M (1981) A new method of NC interpolation for machining the sculptured surface. CIRP Ann 30(1):369–372. https://doi.org/10.1016/S0007-8506(07)60959-7

    Article  Google Scholar 

  102. Wang YS, Yang DS, Liu YZ (2014) A real-time look ahead interpolation algorithm based on Akima curve fitting. Int J Mach Tool Manu 85:122–130

    Google Scholar 

  103. Wang JB, Yau HT (2014) Universal real-time NURBS interpolator on a PC-based controller. J Adv Manuf Technol 71(4):497–507

    Google Scholar 

  104. Cheng MY, Tsai MC, Kuo JC (2002) Real-time NURBS command generators for CNC servo controllers. Int J Mach Tools Manuf 42(7):801–813. https://doi.org/10.1016/S0890-6955(02)00015-9

    Article  Google Scholar 

  105. Lai J-Y, Lin K-Y, Tseng S-J, Ueng W-D (2008) On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk. Int J Adv Manuf Technol 37(1):104–121. https://doi.org/10.1007/s00170-007-0954-7

    Article  Google Scholar 

  106. Zhong WB, Luo XC, Chang WL, Ding F, Cai YK (2018) A real-time interpolator for parametric curves. Int J Mach Tool Manu 125:133–145. https://doi.org/10.1016/j.ijmachtools.2017.11.010

    Article  Google Scholar 

  107. Lin MT, Lee MC, Lee JC, Lee CY, Jian ZW (2016) A look-ahead interpolator with curve fitting algorithm for five-axis tool path. Paper presented at the 2016 IEEE international conference on advanced intelligent mechatronics, Banff, Alberta, Canada, July 12-15, 2016

  108. Shi J, Bi QZ, Zhu LM, Wang YH (2015) Corner rounding of linear five-axis tool path by dual PH curves blending. Int J Mach Tool Manu 88:223–236

    Google Scholar 

  109. Beudaert X, Pechard P-Y, Tournier C (2011) 5-Axis tool path smoothing based on drive constraints. Int J Mach Tools Manuf 51(12):958–965. https://doi.org/10.1016/j.ijmachtools.2011.08.014

    Article  Google Scholar 

  110. Tulsyan S, Altintas Y (2015) Local toolpath smoothing for five-axis machine tools. Int J Mach Tools Manuf 96:15–26. https://doi.org/10.1016/j.ijmachtools.2015.04.014

    Article  Google Scholar 

  111. Sencer B, Shamoto E (2014) Curvature-continuous sharp corner smoothing scheme for Cartesian motion systems. Paper presented at the 2014 IEEE 13th international workshop on advanced motion control (AMC), 14–16 March 2014

  112. Sencer B, Ishizaki K, Shamoto E (2015) A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths. Int J Adv Manuf Technol 76(9):1977–1992. https://doi.org/10.1007/s00170-014-6386-2

    Article  Google Scholar 

  113. Zhao H, Zhu L, Ding H (2013) A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. Int J Mach Tool Manu 65:88–98

    Google Scholar 

  114. Hu Q, Chen YP, Jin XL, Yang JX (2019) A real-time C-3 continuous local corner smoothing and interpolation algorithm for CNC machine tools. J Manuf Sci Eng Trans ASME 141(4):16. https://doi.org/10.1115/1.4042606

    Article  Google Scholar 

  115. Tajima S, Sencer B (2017) Global tool-path smoothing for CNC machine tools with uninterrupted acceleration. Int J Mach Tools Manuf 121:81–95. https://doi.org/10.1016/j.ijmachtools.2017.03.002

    Article  Google Scholar 

  116. Beudaert X, Lavernhe S, Tournier C (2013) 5-Axis local corner rounding of linear tool path discontinuities. Int J Mach Tools Manuf 73:9–16. https://doi.org/10.1016/j.ijmachtools.2013.05.008

    Article  Google Scholar 

  117. Tajima S, Sencer B (2019) Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing. Int J Mach Tool Manu 142:1–15. https://doi.org/10.1016/j.ijmachtools.2019.04.005

    Article  Google Scholar 

  118. Zhou J, Sun Y, Guo D (2014) Adaptive feedrate interpolation with multiconstraints for five-axis parametric toolpath. Int J Adv Manuf Technol 71(9):1873–1882. https://doi.org/10.1007/s00170-014-5635-8

    Article  Google Scholar 

  119. Jia Z, Wang L, Ma J, Zhao K, Liu W (2014) Feed speed scheduling method for parts with rapidly varied geometric feature based on drive constraint of NC machine tool, vol 87. https://doi.org/10.1016/j.ijmachtools.2014.07.010

    Google Scholar 

  120. Yeh SS, Hsu PL (1999) The speed-controlled interpolator for machining parametric curves. Comput Aided Des 31(5):349–357. https://doi.org/10.1016/S0010-4485(99)00035-4

    Article  MATH  Google Scholar 

  121. Liu M, Huang Y, Yin L, Guo J, Shao X, Zhang G (2014) Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools. Int J Mach Tools Manuf 87:1–15. https://doi.org/10.1016/j.ijmachtools.2014.07.002

    Article  Google Scholar 

  122. Yeh S-S, Hsu P-L (2002) Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput Aided Des 34(3):229–237. https://doi.org/10.1016/S0010-4485(01)00082-3

    Article  Google Scholar 

  123. Zhiming X, Jincheng C, Zhengjin F (2002) Performance evaluation of a real-time interpolation algorithm for NURBS curves. Int J Adv Manuf Technol 20(4):270–276. https://doi.org/10.1007/s001700200152

    Article  Google Scholar 

  124. Jia Z-Y, Song D-N, Ma J-W, Hu G-Q, Su W-W (2017) A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints. Int J Mach Tools Manuf 116:1–17. https://doi.org/10.1016/j.ijmachtools.2016.12.007

    Article  Google Scholar 

  125. Sun YW, Bao YR, Kang KX, Guo DM (2013) An adaptive feedrate scheduling method of dual NURBS curve interpolator for precision five axis CNC machining. Int J Adv Manuf Technol 68:1977–1987

    Google Scholar 

  126. Erkorkmaz K, Chen Q-G, Zhao M-Y, Beudaert X, Gao X-S (2017) Linear programming and windowing based feedrate optimization for spline toolpaths. CIRP Ann 66(1):393–396. https://doi.org/10.1016/j.cirp.2017.04.058

    Article  Google Scholar 

  127. Jin YA, He Y, Fu JZ (2013) A look-ahead and adaptive speed control algorithm for parametric interpolation. Int J Adv Manuf Technol 69:2613–2620

    Google Scholar 

  128. Beudaert X, Lavernhe S, Tournier C (2012) Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. Int J Mach Tools Manuf 57:73–82. https://doi.org/10.1016/j.ijmachtools.2012.02.005

    Article  Google Scholar 

  129. Qiao ZF, Wang HH, Liu ZZ, Wang TY, Hu M (2015) Nanoscale trajectory planning with flexible Acc/Dec and look-ahead method. Int J Adv Manuf Technol 96:94–105

    Google Scholar 

  130. Liu X, Ahmad F, Yamazaki K, Mori M (2005) Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics. Int J Mach Tools Manuf 45(4):433–444. https://doi.org/10.1016/j.ijmachtools.2004.09.009

    Article  Google Scholar 

  131. Feng J, Li Y, Wang Y, Chen M (2010) Design of a real-time adaptive NURBS interpolator with axis acceleration limit. Int J Adv Manuf Technol 48(1):227–241. https://doi.org/10.1007/s00170-009-2261-y

    Article  Google Scholar 

  132. Nam S-H, Yang M-Y (2004) A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Comput Aided Des 36(1):27–36. https://doi.org/10.1016/S0010-4485(03)00066-6

    Article  Google Scholar 

  133. Wang YS, Yang DS, Gai RL, Wang SH, Sun SJ (2015) Design of trigonometric velocity scheduling algorithm based on pre-interpolation and look-ahead interpolation. Int J Mach Tool Manu 96:94–105

    Google Scholar 

  134. Shahzadeh A, Khosravi A, Robinette T, Nahavandi S (2018) Smooth path planning using biclothoid fillets for high speed CNC machines. Int J Mach Tool Manu 132:36–49. https://doi.org/10.1016/j.ijmachtools.2018.04.003

    Article  Google Scholar 

  135. Tajima S, Sencer B, Shamoto E (2018) Accurate interpolation of machining tool-paths based on FIR filtering. Precis Eng-J Int Soc Precis Eng Nanotechnol 52:332–344. https://doi.org/10.1016/j.precisioneng.2018.01.016

    Article  Google Scholar 

  136. Sencer B, Tajima S (2017) Frequency optimal feed motion planning in computer numerical controlled machine tools for vibration avoidance. J Manuf Sci Eng Trans ASME 139(1):13. https://doi.org/10.1115/1.4034140

    Article  Google Scholar 

  137. Sencer B, Dumanli A, Yamada Y (2018) Spline interpolation with optimal frequency spectrum for vibration avoidance. CIRP Ann Manuf Technol 67(1):377–380. https://doi.org/10.1016/j.cirp.2018.03.002

    Article  Google Scholar 

  138. Mansour SZ, Seethaler R (2017) Feedrate optimization for computer numerically controlled machine tools using modeled and measured process constraints. J Manuf Sci Eng Trans ASME 139(1):9. https://doi.org/10.1115/1.4033933

    Article  Google Scholar 

  139. Singer NC, Seering WP (1990) Preshaping command inputs to reduce system vibration. J Dyn Syst Meas Control Trans ASME 112(1):76–82

    Google Scholar 

  140. Dietmair A, Verl A (2009) Drive based vibration reduction for production machines. Mod Mach Sci J 3:130–134

    Google Scholar 

  141. Altintas Y, Khoshdarregi MR (2012) Contour error control of CNC machine tools with vibration avoidance. CIRP Ann Manuf Technol 61:335–338

    Google Scholar 

  142. Jones SD, Ulsoy AG (1999) An approach to control input shaping with application to coordinate measuring machines. J Dyn Syst Meas Control 121(2):242–247. https://doi.org/10.1115/1.2802461

    Article  Google Scholar 

  143. Okwudire C, Ramani K, Duan M (2016) A trajectory optimization method for improved tracking of motion commands using CNC machines that experience unwanted vibration. CIRP Ann Manuf Technol 65(1):373–376. https://doi.org/10.1016/j.cirp.2016.04.100

    Article  Google Scholar 

  144. AI Nano CNC for high-speed high-accuracy machining, FANUC series 31i/32i/30i/35i-Model B, FANUC series 31i-Model B5-datasheet (2004). FANUC Corporation

  145. Milling with SIMUMERIK: mold making with 3- to 5-axis simultaneous milling manual (2013) Siemens Corporation

  146. iTNC 530 HSCI NC Software 606 420-02, 606 421-02-technique manual (2012) Heidenhain Corporation

  147. Flores V, Ortega C, Alberti M, Rodriguez CA, de Ciurana J, Elias A (2007) Evaluation and modeling of productivity and dynamic capability in high-speed machining centers. Int J Adv Manuf Technol 33(3–4):403–411. https://doi.org/10.1007/s00170-006-0784-z

    Article  Google Scholar 

  148. Dong J, Wang T, Li B, Ding Y (2014) Smooth feedrate planning for continuous short line tool path with contour error constraint. Int J Mach Tools Manuf 76:1–12. https://doi.org/10.1016/j.ijmachtools.2013.09.009

    Article  Google Scholar 

  149. Lin M-T, Tsai M-S, Yau H-T (2007) Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm. Int J Mach Tools Manuf 47(15):2246–2262. https://doi.org/10.1016/j.ijmachtools.2007.06.005

    Article  Google Scholar 

  150. Koren Y, Lo CC (1991) Variable-gain cross-coupling controller for contouring. CIRP Ann Manuf Technol 40(1):371–374

    Google Scholar 

  151. Shih Y-T, Chen C-S, Lee A-C (2002) A novel cross-coupling control design for Bi-axis motion. Int J Mach Tool Manu 42:1539–1548

    Google Scholar 

  152. Wang Z, Hu CX, Zhu Y, He SQ, Zhang M, Mu HH (2018) Newton-ILC contouring error estimation and coordinated motion control for precision multiaxis systems with comparative experiments. IEEE Trans Ind Electron 65(2):1470–1480. https://doi.org/10.1109/tie.2017.2733455

    Article  Google Scholar 

  153. Yang X, Seethaler R, Zhan CP, Lu D, Zhao WH (2019) A novel contouring error estimation method or contouring control. IEEE-ASME Trans Mechatron 24(4):1902–1907. https://doi.org/10.1109/tmech.2019.2928791

    Article  Google Scholar 

  154. Kulkarni PK, Srinivasan K (1989) Optimal contouring control of multi-axial feed drive servomechanisms. J Dyn Syst Meas Control Trans ASME 111:140–147

    Google Scholar 

  155. Chung HY, Liu CH (1992) A model-referenced adaptive control strategy for improving contour accuracy of multiaxis machine tools. IEEE Trans Ind Appl 28:221–227

    Google Scholar 

  156. Yeh ZM (1998) A cross-coupled bistage fuzzy logic controller for biaxis servomechanism control. Fuzzy Sets Syst 97:265–275

    Google Scholar 

  157. Yeh SS, Hsu PL (1999) Theory and applications of the robust crosscoupled control design. ASME J Dyn Syst Meas Control 121:524–530

    Google Scholar 

  158. Srinivasan K, Kulkarni PK (1990) Cross-coupled control of biaxial feed drive servomechanisms. J Dyn Syst Meas Control Trans ASME 112(2):225–232

    Google Scholar 

  159. Lo CC (2002) A tool-path control scheme for five-axis machine tools. Int J Mach Tools Manuf 42:79–88

    Google Scholar 

  160. Altintas Y, Sencer B (2010) High speed contouring control strategy for five-axis machine tools. CIRP Ann Manuf Technol 59(1):417–420

    Google Scholar 

  161. Yang JX, Altintas Y (2013) Generalized kinematics of five-axis serial machines with non-singular tools path generation. Int J Mach Tool Manu 75:119–132

    Google Scholar 

  162. Yang JX, Altintas Y (2015) A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. Int J Mach Tool Manu 88:9–23

    Google Scholar 

  163. Yang JX, Zhang HT, Ding H (2017) Contouring error control of the tool center point function for five axis machine tools based on model predictive control. Int J Adv Manuf Technol 88:2909–2919

    Google Scholar 

  164. Li XF, Zhao H, Zhao X, Ding H (2016) Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. Int J Mach Tool Manu 108:74–82

    Google Scholar 

  165. Dong B, Liu Y, Wang Z (2014) Study on 5-axis CNC system cross-coupled controller based on double NURBS hybrid parametric interpolation algorithm. China Mech Eng 25(22):3038–3044

    Google Scholar 

  166. Pi SW, Liu Q, Liu QT (2018) A novel dynamic contour error estimation and control in high-speed CNC. Int J Adv Manuf Technol 96(1–4):547–560. https://doi.org/10.1007/s00170-018-1629-2

    Article  Google Scholar 

  167. Wang Z, Hu CX, Zhu Y (2019) Dynamical model based contouring error position-loop feedforward control for multiaxis motion systems. IEEE Trans Ind Inform 15(8):4686–4695. https://doi.org/10.1109/tii.2019.2895071

    Article  Google Scholar 

  168. Poo AN, Bollinger JG, Younkin GW (1972) Dynamic errors in type 1 contouring systems. IEEE Trans Ind Appl IA-8(4):477–484

    Google Scholar 

  169. Xi XC, Poo AN, Hong GS (2009) Improving contouring accuracy by tuning gains for a bi-axial CNC machine. Int J Mach Tool Manu 49:395–460

    Google Scholar 

  170. Lei WT, Sung MP, Liu WL, Chuang YC (2007) Double ballbar test for the rotary axes of five-axis CNC machine tools. Int J Mach Tools Manuf 47(2):273–285. https://doi.org/10.1016/j.ijmachtools.2006.03.012

    Article  Google Scholar 

  171. Lei WT, Paung IM, Yu CC (2009) Total ballbar dynamic tests for five axis CNC machine tools. Int J Mach Tool Manu 49:488–499

    Google Scholar 

  172. Lei W-T, Wang W-C, Fang T-C (2014) Ballbar dynamic tests for rotary axes of five-axis CNC machine tools. Int J Mach Tools Manuf 82–83:29–41. https://doi.org/10.1016/j.ijmachtools.2014.03.008

    Article  Google Scholar 

  173. Lin MT, Wu SK (2013) Modeling and analysis of servo dynamics errors on measuring paths of five axis machine tools. Int J Mach Tool Manu 66:1–14

    Google Scholar 

  174. Wang W, Zhang X, Zheng C, Zhao X, Bian Z, Jiang Z (2014) Analysis for machining precision prediction and influencing factors of complex surface in aviation. J Univ Electron Sci Technol China 43(5):787–793

    Google Scholar 

  175. Jiang Z, Ding JX, Song ZY (2016) Modeling and simulation of surface morphology abnormality of S test piece machined by five axis CNC machine tool. Int J Adv Manuf Technol 85:2745–2759

    Google Scholar 

  176. Duong TQ, Rodriguez-Ayerbe P, Lavernhe S, Tournier C, Dumur D (2019) Contour error pre-compensation for five-axis high speed machining: offline gain adjustment approach. Int J Adv Manuf Technol 100(9–12):3113–3125. https://doi.org/10.1007/s00170-018-2859-z

    Article  Google Scholar 

  177. Marciniak K (1987) Influence of surface shape on admissible tool positions in 5-aixs face milling. Comput Aided Des 19(5):233–236

    MATH  Google Scholar 

  178. Kruth JP, Klewais P (1994) Optimization and dynamic adaptation of the cutter inclination during five-axis milling of sculptured surfaces. CIRP Ann Manuf Technol 43(1):443–448

    Google Scholar 

  179. Chiou CJ, Lee YS (2002) A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput Aided Des 34(5):357–371

    MATH  Google Scholar 

  180. Kim T, Sarma SE (2002) Tool path generation along directions of maximum kinematic performance; a first cut at machine-optimal paths. Comput Aided Des 34(6):453–468

    Google Scholar 

  181. Giri V, Bezbaruah D, Bubna P, Choudhury AR (2005) Selection of master cutter paths in sculptured surface machining by employing curvature principle. Int J Mach Tool Manu 45(10):1202–1209

    Google Scholar 

  182. Lim EM, Menq CH (1997) Integrated planning for precision machining of complex surfaces. Part 1: cutting-path and feedrate optimization. Int J Mach Tool Manu 37(1):61–75

    Google Scholar 

  183. Lu D, Liu S, Li X, Wu D, Zhao W, Lu B (2017) Optimal cutting directions by considering the dynamic mismatch between feed axes of machine tools. Int J Adv Manuf Technol 95:1607–1615. https://doi.org/10.1007/s00170-017-1243-8

    Article  Google Scholar 

  184. Yuen A, Altintas Y (2016) Trajectory generation and control of a 9 axis CNC micromachining center. CIRP Ann Manuf Technol 65:349–352

    Google Scholar 

  185. Fernandez-Gauna B, Ansoategui I, Etxeberria-Agiriano I, Graña M (2014) Reinforcement learning of ball screw feed drive controllers. Eng Appl Artif Intell 30:107–117

    Google Scholar 

  186. Hou ZS, Wang Z (2013) From model-based control to data-driven control: survey, classification and perspective. Inf Sci 235:3–35

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is financially supported by the project of the National Natural Science Funds of China (Grant No. 51775421), the Major Project of High-end CNC Machine Tool and Basic Manufacturing Equipment of China (Grant No. 2015ZX04001002), the Major Project of High-end CNC Machine Tool and Basic Manufacturing Equipment of China (Grant No. 2016ZX04004-002-01), and the project funded by China Postdoctoral Science Foundation (Grant No. 2015 M570824).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dun Lyu or Wanhua Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, D., Liu, Q., Liu, H. et al. Dynamic error of CNC machine tools: a state-of-the-art review. Int J Adv Manuf Technol 106, 1869–1891 (2020). https://doi.org/10.1007/s00170-019-04732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04732-9

Keywords

Navigation