Skip to main content
Log in

Novel predictive features using a wrapper model for rolling bearing fault diagnosis based on vibration signal analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In modern diagnostic approaches, the key step consists in generating the features related to fault type and severity. In fact, the generated features should be able to help the classifier to determine the health condition of the monitored system based on the measured signal. In this paper, in order to make an effective diagnosis about the rolling-element bearing failure, novel generated features that can maintain the physical meaning of the extracted vibration signal, while identifying its relationship to rolling bearing damage, are proposed using a wrapper model. For this purpose, based only on the Most Impulsive Frequency Bands (MIFBs) of the measured vibration signals for many bearing conditions, 33 feature parameters are proposed. Using a wrapper scheme, these parameters can be reduced until a set of them are found improving the efficiency of the diagnostic approach. The effectiveness of the proposed predictive features is analyzed by comparing it with some related works using many testing data for several bearing conditions. The experimental results reveal that the proposed procedure has obtained a high level of accuracy of 99.83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aiordachioaie D, Popescu TD (2019) VIBROCHANGE—a development system for condition monitoring based on advanced techniques of signal processing. Int J Adv Manuf Technol 105:919–936. https://doi.org/10.1007/s00170-019-04255-3

    Article  Google Scholar 

  2. Sousa R, Antunes J, Coutinho F, Silva E, Santos J, Ferreira H (2019) Robust cepstral-based features for anomaly detection in ball bearings. Int J Adv Manuf Technol 103:2377–2390. https://doi.org/10.1007/s00170-019-03597-2

    Article  Google Scholar 

  3. Immovilli F, Cocconcelli M, Bellini A, Rubini R (2009) Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals. IEEE Trans Ind Electron 56:4710–4717. https://doi.org/10.1109/TIE.2009.2025288

    Article  Google Scholar 

  4. Immovilli F, Bianchini C, Cocconcelli M et al (2013) Bearing fault model for induction motor with externally induced vibration. IEEE Trans Ind Electron 60:3408–3418. https://doi.org/10.1109/TIE.2012.2213566

    Article  Google Scholar 

  5. Xiao L, Zhang X, Lu S et al (2019) A novel weak-fault detection technique for rolling element bearing based on vibrational resonance. J Sound Vib 438:490–505. https://doi.org/10.1016/j.jsv.2018.09.039

    Article  Google Scholar 

  6. Lu Y, Xie R, Liang SY (2019) Adaptive online dictionary learning for bearing fault diagnosis. Int J Adv Manuf Technol 101:195–202. https://doi.org/10.1007/s00170-018-2902-0

    Article  Google Scholar 

  7. Duan Z, Wu T, Guo S, Shao T, Malekian R, Li Z (2018) Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review. Int J Adv Manuf Technol 96:803–819. https://doi.org/10.1007/s00170-017-1474-8

    Article  Google Scholar 

  8. Abdelkader R, Kaddour A, Derouiche Z (2018) Enhancement of rolling bearing fault diagnosis based on improvement of empirical mode decomposition denoising method. Int J Adv Manuf Technol 97:3099–3117. https://doi.org/10.1007/s00170-018-2167-7

    Article  Google Scholar 

  9. Babouri MK, Ouelaa N, Kebabsa T, Djebala A (2019) Application of the cyclostationarity analysis in the detection of mechanical defects: comparative study. Int J Adv Manuf Technol 103:1681–1699. https://doi.org/10.1007/s00170-019-03652-y

    Article  Google Scholar 

  10. Attoui I, Fergani N, Boutasseta N et al (2017) A new time–frequency method for identification and classification of ball bearing faults. J Sound Vib 397:241–265. https://doi.org/10.1016/j.jsv.2017.02.041

    Article  Google Scholar 

  11. Lau ECC, Ngan HW (2010) Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis. IEEE Trans Instrum Meas 59:2683–2690. https://doi.org/10.1109/TIM.2010.2045927

    Article  Google Scholar 

  12. Huang W, Gao G, Li N et al (2019) Time-frequency squeezing and generalized demodulation combined for variable speed bearing fault diagnosis. IEEE Trans Instrum Meas 68:2819–2829. https://doi.org/10.1109/TIM.2018.2868519

    Article  Google Scholar 

  13. Lu Y, Xie R, Liang SY (2019) CEEMD-assisted bearing degradation assessment using tight clustering. Int J Adv Manuf Technol 104:1259–1267. https://doi.org/10.1007/s00170-019-04078-2

    Article  Google Scholar 

  14. Liu T-I, Lee J, Singh P, Liu G (2014) Real-time recognition of ball bearing states for the enhancement of precision, quality, efficiency, safety, and automation of manufacturing. Int J Adv Manuf Technol 71:809–816. https://doi.org/10.1007/s00170-013-5497-5

    Article  Google Scholar 

  15. Yu G, Li C, Kamarthi S (2009) Machine fault diagnosis using a cluster-based wavelet feature extraction and probabilistic neural networks. Int J Adv Manuf Technol 42:145–151. https://doi.org/10.1007/s00170-008-1563-9

    Article  Google Scholar 

  16. Yu G, Li C, Sun J (2010) Machine fault diagnosis based on Gaussian mixture model and its application. Int J Adv Manuf Technol 48:205–212. https://doi.org/10.1007/s00170-009-2283-5

    Article  Google Scholar 

  17. Ibarra-Zarate D, Tamayo-Pazos O, Vallejo-Guevara A (2019) Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission. Int J Adv Manuf Technol 104(9–12):4155–4168. 1–14. https://doi.org/10.1007/s00170-019-04171-6

    Article  Google Scholar 

  18. Wang H, Chen J, Zhou Y, Ni G (2019) Early fault diagnosis of rolling bearing based on noise-assisted signal feature enhancement and stochastic resonance for intelligent manufacturing. Int J Adv Manuf Technol:1–7. https://doi.org/10.1007/s00170-019-04333-6

  19. Bouhalais ML, Djebala A, Ouelaa N, Babouri MK (2018) CEEMDAN and OWMRA as a hybrid method for rolling bearing fault diagnosis under variable speed. Int J Adv Manuf Technol 94:2475–2489. https://doi.org/10.1007/s00170-017-1044-0

    Article  Google Scholar 

  20. Moumene I, Ouelaa N (2016) Application of the wavelets multiresolution analysis and the high-frequency resonance technique for gears and bearings faults diagnosis. Int J Adv Manuf Technol 83:1315–1339. https://doi.org/10.1007/s00170-015-7436-0

    Article  Google Scholar 

  21. Khoualdia T, Hadjadj AE, Bouacha K, Ould Abdeslam D (2017) Multi-objective optimization of ANN fault diagnosis model for rotating machinery using grey rational analysis in Taguchi method. Int J Adv Manuf Technol 89:3009–3020. https://doi.org/10.1007/s00170-016-9278-9

    Article  Google Scholar 

  22. Djebala A, Babouri MK, Ouelaa N (2015) Rolling bearing fault detection using a hybrid method based on Empirical Mode Decomposition and optimized wavelet multi-resolution analysis. Int J Adv Manuf Technol 79:2093–2105. https://doi.org/10.1007/s00170-015-6984-7

    Article  Google Scholar 

  23. Lu Y, Xie R, Liang SY (2018) Detection of weak fault using sparse empirical wavelet transform for cyclic fault. Int J Adv Manuf Technol 99:1195–1201. https://doi.org/10.1007/s00170-018-2553-1

    Article  Google Scholar 

  24. Chen S, Du M, Peng Z et al (2019) High-accuracy fault feature extraction for rolling bearings under time-varying speed conditions using an iterative envelope-tracking filter. J Sound Vib 448:211–229. https://doi.org/10.1016/j.jsv.2019.02.026

    Article  Google Scholar 

  25. Ma H, Feng Z (2019) Planet bearing fault diagnosis using multipoint optimal minimum entropy deconvolution adjusted. J Sound Vib 449:235–273. https://doi.org/10.1016/j.jsv.2019.02.024

    Article  Google Scholar 

  26. Zhao Z, Qiao B, Wang S et al (2019) A weighted multi-scale dictionary learning model and its applications on bearing fault diagnosis. J Sound Vib 446:429–452. https://doi.org/10.1016/j.jsv.2019.01.042

    Article  Google Scholar 

  27. Huang Y, Lin J, Liu Z, Wu W (2019) A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis. J Sound Vib 444:216–234. https://doi.org/10.1016/j.jsv.2018.12.033

    Article  Google Scholar 

  28. Zhou Q, Yan P, Liu H, Xin Y, Chen Y (2018) Research on a configurable method for fault diagnosis knowledge of machine tools and its application. Int J Adv Manuf Technol 95:937–960. https://doi.org/10.1007/s00170-017-1268-z

    Article  Google Scholar 

  29. Lu Y, Xie R, Liang SY (2019) Extraction of weak fault using combined dual-tree wavelet and improved MCA for rolling bearings. Int J Adv Manuf Technol 104:2389–2400. https://doi.org/10.1007/s00170-019-04065-7

    Article  Google Scholar 

  30. Li Y, Yang Y, Wang X et al (2018) Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine. J Sound Vib 428:72–86. https://doi.org/10.1016/j.jsv.2018.04.036

    Article  Google Scholar 

  31. Yen GG, Lin K-C (2000) Wavelet packet feature extraction for vibration monitoring. IEEE Trans Ind Electron 47:650–667. https://doi.org/10.1109/41.847906

    Article  Google Scholar 

  32. Zhou Z, Zhao J, Cao F (2014) A novel approach for fault diagnosis of induction motor with invariant character vectors. Inf Sci (Ny) 281:496–506. https://doi.org/10.1016/j.ins.2014.05.046

    Article  Google Scholar 

  33. Medina R, Macancela J-C, Lucero P, Cabrera D, Cerrada M, Sánchez RV, Vásquez RE (2019) Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis. Int J Adv Manuf Technol 104:2195–2214. https://doi.org/10.1007/s00170-019-03858-0

    Article  Google Scholar 

  34. Martin HR, Honarvar F (1995) Application of statistical moments to bearing failure detection. Appl Acoust 44:67–77. https://doi.org/10.1016/0003-682X(94)P4420-B

    Article  Google Scholar 

  35. Randall RB, Antoni J (2011) Rolling element bearing diagnostics—a tutorial. Mech Syst Signal Process 25:485–520. https://doi.org/10.1016/j.ymssp.2010.07.017

    Article  Google Scholar 

  36. Antoni J (2007) Fast computation of the kurtogram for the detection of transient faults. Mech Syst Signal Process 21:108–124. https://doi.org/10.1016/j.ymssp.2005.12.002

    Article  Google Scholar 

  37. Wang Y, Xiang J, Markert R, Liang M (2016) Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications. Mech Syst Signal Process 66–67:679–698. https://doi.org/10.1016/j.ymssp.2015.04.039

    Article  Google Scholar 

  38. Li Y, Xu M, Wang R, Huang W (2016) A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J Sound Vib 360:277–299. https://doi.org/10.1016/j.jsv.2015.09.016

    Article  Google Scholar 

  39. Agrawal D, Dubey R (2015) Bearing fault classification using ANN-based Hilbert footprint analysis. IET Sci Meas Technol 9:1016–1022. https://doi.org/10.1049/iet-smt.2015.0026

    Article  Google Scholar 

  40. Kang M, Kim J, Kim J-M (2015) Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf Sci (Ny) 294:423–438. https://doi.org/10.1016/j.ins.2014.10.014

    Article  MathSciNet  Google Scholar 

  41. Qiao Z, Lei Y, Li N (2019) Applications of stochastic resonance to machinery fault detection: a review and tutorial. Mech Syst Signal Process 122:502–536. https://doi.org/10.1016/j.ymssp.2018.12.032

    Article  Google Scholar 

  42. Aggarwal CC (2014) Data classification : algorithms and applications. Chapman and Hall/CRC

  43. Harmouche J, Delpha C, Diallo D (2015) Improved fault diagnosis of ball bearings based on the global spectrum of vibration signals. IEEE Trans Energy Convers 30:376–383. https://doi.org/10.1109/TEC.2014.2341620

    Article  Google Scholar 

  44. Maldonado S, Carrizosa E, Weber R (2015) Kernel penalized k-means: a feature selection method based on kernel k-means. Inf Sci (Ny) 322:150–160. https://doi.org/10.1016/j.ins.2015.06.008

    Article  MathSciNet  MATH  Google Scholar 

  45. Case Western Reserve University Bearing Data Center. http://csegroups.case.edu/bearingdatacenter/home. (accessed April 2015)

  46. Atoui I, Meradi H, Boulkroune R, et al (2013) Fault detection and diagnosis in rotating machinery by vibration monitoring using FFT and Wavelet techniques. In: 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA). IEEE, pp 401–406

  47. Talhaoui H, Menacer A, Kessal A, Tarek A (2018) Experimental diagnosis of broken rotor bars fault in induction machine based on Hilbert and discrete wavelet transforms. Int J Adv Manuf Technol 95:1399–1408. https://doi.org/10.1007/s00170-017-1309-7

    Article  Google Scholar 

  48. Hu A, Xiang L, Xu S, Lin J (2019) Frequency loss and recovery in rolling bearing fault detection. Chinese J Mech Eng 32:35–12. https://doi.org/10.1186/s10033-019-0349-3

    Article  Google Scholar 

  49. Wang Y, Liang M (2011) An adaptive SK technique and its application for fault detection of rolling element bearings. Mech Syst Signal Process 25:1750–1764. https://doi.org/10.1016/j.ymssp.2010.12.008

    Article  Google Scholar 

  50. Zarei J, Tajeddini MA, Karimi HR (2014) Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24:151–157. https://doi.org/10.1016/j.mechatronics.2014.01.003

    Article  Google Scholar 

  51. Antoni J, Randall RB (2003) A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. J Vib Acoust 125:282–289. https://doi.org/10.1115/1.1569940

    Article  Google Scholar 

  52. Zhou Y, Chen J, Dong GM et al (2012) Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis. Mech Syst Signal Process 26:229–243. https://doi.org/10.1016/j.ymssp.2011.07.006

    Article  Google Scholar 

  53. Attoui I, Omeiri A (2015) Fault diagnosis of an induction generator in a wind energy conversion system using signal processing techniques. Electr Power Components Syst 43:2262–2275. https://doi.org/10.1080/15325008.2015.1082161

    Article  Google Scholar 

  54. Zhang L, Suganthan PN (2016) A survey of randomized algorithms for training neural networks. Inf Sci (Ny) 364–365:146–155. https://doi.org/10.1016/j.ins.2016.01.039

    Article  MATH  Google Scholar 

  55. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  56. Hooshmand R, Parastegari M, Forghani Z (2012) Adaptive neuro-fuzzy inference system approach for simultaneous diagnosis of the type and location of faults in power transformers. IEEE Electr Insul Mag 28:32–42. https://doi.org/10.1109/MEI.2012.6268440

    Article  Google Scholar 

  57. Schlechtingen M, Santos IF, Achiche S (2013) Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans Sustain Energy 4:671–679. https://doi.org/10.1109/TSTE.2013.2241797

    Article  Google Scholar 

  58. Ballal MS, Khan ZJ, Suryawanshi HM, Sonolikar RL (2007) Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Trans Ind Electron 54:250–258. https://doi.org/10.1109/TIE.2006.888789

    Article  Google Scholar 

  59. Chen C, Zhang B, Vachtsevanos G, Orchard M (2011) Machine condition prediction based on adaptive neuro–fuzzy and high-order particle filtering. IEEE Trans Ind Electron 58:4353–4364. https://doi.org/10.1109/TIE.2010.2098369

    Article  Google Scholar 

  60. Antonelli M, Ducange P, Marcelloni F, Segatori A (2016) On the influence of feature selection in fuzzy rule-based regression model generation. Inf Sci (Ny) 329:649–669. https://doi.org/10.1016/j.ins.2015.09.045

    Article  Google Scholar 

  61. Karaboga D, Kaya E (2016) An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl Soft Comput 49:423–436. https://doi.org/10.1016/j.asoc.2016.07.039

    Article  Google Scholar 

  62. He D, Li R, Zhu J (2013) Plastic bearing fault diagnosis based on a two-step data mining approach. IEEE Trans Ind Electron 60:3429–3440. https://doi.org/10.1109/TIE.2012.2192894

    Article  Google Scholar 

  63. Tan Y, Shuai C, Jiao L, Shen L (2017) An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance. Environ Impact Assess Rev 65:29–40. https://doi.org/10.1016/j.eiar.2017.04.004

    Article  Google Scholar 

  64. Kang H-J, Van M (2015) Bearing-fault diagnosis using non-local means algorithm and empirical mode decomposition-based feature extraction and two-stage feature selection. IET Sci Meas Technol 9:671–680. https://doi.org/10.1049/iet-smt.2014.0228

    Article  Google Scholar 

  65. Vakharia V, Gupta V, Kankar P (2015) A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings. J Vib Control 21:3123–3131. https://doi.org/10.1177/1077546314520830

    Article  Google Scholar 

  66. Li Y, Xu M, Wei Y, Huang W (2016) A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 77:80–94. https://doi.org/10.1016/j.measurement.2015.08.034

    Article  Google Scholar 

  67. Yuwono M, Qin Y, Zhou J et al (2016) Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model. Eng Appl Artif Intell 47:88–100. https://doi.org/10.1016/j.engappai.2015.03.007

    Article  Google Scholar 

  68. Liu Z, Cao H, Chen X et al (2013) Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 99:399–410. https://doi.org/10.1016/j.neucom.2012.07.019

    Article  Google Scholar 

  69. Ben Ali J, Saidi L, Mouelhi A et al (2015) Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations. Eng Appl Artif Intell 42:67–81. https://doi.org/10.1016/j.engappai.2015.03.013

    Article  Google Scholar 

  70. Prieto MD, Cirrincione G, Espinosa AG et al (2013) Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans Ind Electron 60:3398–3407. https://doi.org/10.1109/TIE.2012.2219838

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Attoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attoui, I., Oudjani, B., Boutasseta, N. et al. Novel predictive features using a wrapper model for rolling bearing fault diagnosis based on vibration signal analysis. Int J Adv Manuf Technol 106, 3409–3435 (2020). https://doi.org/10.1007/s00170-019-04729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04729-4

Keywords

Navigation