Skip to main content
Log in

Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper addresses the use of two algorithms based on symbolic dynamics analysis of vibration signal for fault diagnosis in gearboxes. The symbolic dynamics algorithm (SDA) works by subdividing the phase space described by the Poincaré plot into several angular regions; then, a symbol is assigned to each region. The probability distributions generated by the set of symbols are considered as features for classification of faults in a gearbox. The peak symbolic dynamics algorithm (PSDA) is a variant that extracts a sequence of peaks from the vibration signals and then performs the phase-space subdivision and symbol coding. A gearbox vibration signal dataset is analyzed for classifying 10 types of faults. Fault classification is attained using a multi-class support vector machine. The highest accuracy attained using k-fold cross-validation is 100.0% for load L3 with SDA and 100% with load L2 with PSDA. The accuracy considering all signals in the gearbox dataset is 99.2% with SDA and 99.8% with PSDA. The algorithms proposed have the advantage of being simple, accurate, and fast, and they could be adapted for online condition monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aherwar A (2012) An investigation on gearbox fault detection using vibration analysis techniques: a review. Aust J Mech Eng 10(2):169–183

    Google Scholar 

  2. Akintayo A, Sarkar S (2018) Hierarchical symbolic dynamic filtering of streaming non-stationary time series data. Signal Process 151:76–88

    Google Scholar 

  3. Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159

    Google Scholar 

  4. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    Google Scholar 

  5. Cafaro C, Lord WM, Sun J, Bollt EM (2015) Causation entropy from symbolic representations of dynamical systems. Chaos: Interdiscip J Nonlinear Sci 25(4):043106

    MathSciNet  MATH  Google Scholar 

  6. Cerrada M, Sánchez RV, Pacheco F, Cabrera D, Zurita G, Li C (2016) Hierarchical feature selection based on relative dependency for gear fault diagnosis. Appl Intell 44(3):687–703

    Google Scholar 

  7. Cerrada M, Sánchez RV, Li C, Pacheco F, Cabrera D, de Oliveira JV, Vásquez RE (2018) A review on data-driven fault severity assessment in rolling bearings. Mechan Syst Signal Process 99:169–196

    Google Scholar 

  8. Cerrada M, Zurita G, Cabrera D, Sánchez RV, Artés M, Li C (2016) Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech Syst Signal Process 70:87–103

    Google Scholar 

  9. Chang-Jian CW (2010) Strong nonlinearity analysis for gear-bearing system under nonlinear suspension—bifurcation and chaos. Nonlinear Anal: Real World Appl 11(3):1760–1774

    MathSciNet  MATH  Google Scholar 

  10. Chen G (2009) Study on nonlinear dynamic response of an unbalanced rotor supported on ball bearing. J Vibr Acoust 131(6):061001

    Google Scholar 

  11. Daw CS, Finney CEA, Tracy E (2003) A review of symbolic analysis of experimental data. Rev Sci Instrum 74(2):915–930

    Google Scholar 

  12. Escalera S, Pujol O, Radeva P (2010) On the decoding process in ternary error-correcting output codes. IEEE Trans Pattern Anal Mach Intell 32(1):120–134

    Google Scholar 

  13. Ghys É (2013) The Lorenz Attractor, a Paradigm for Chaos. Springer, Basel, pp 1–54

    MATH  Google Scholar 

  14. Grebogi C, Ott E, Yorke JA (1987) Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238(4827):632–638

    MathSciNet  MATH  Google Scholar 

  15. Gupta S, Ray A (2007) Symbolic dynamic filtering for data-driven pattern recognition. In: Zoeller EA (ed) Pattern recognition: theory and application, p 17–71

  16. He J, Yang S, Gan C (2017) Unsupervised fault diagnosis of a gear transmission chain using a deep belief network. Sensors 17(7):1564

    Google Scholar 

  17. Holmes P (1990) Poincaré, celestial mechanics, dynamical-systems theory and ”chaos”. Phys Rep 193 (3):137–163

    MathSciNet  Google Scholar 

  18. Hossin M, Sulaiman M (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5(2):1

    Google Scholar 

  19. Huang J, Ling CX (2005) Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

    Google Scholar 

  20. Janjarasjitt S, Ocak H, Loparo K (2008) Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J Sound Vib 317 (1):112– 126

    Google Scholar 

  21. Jedliński Ł, Jonak J (2015) Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform. Appl Soft Comput 30:636–641

    Google Scholar 

  22. Karmakar CK, Gubbi J, Khandoker AH, Palaniswami M (2010) Analyzing temporal variability of standard descriptors of poincaré plots. J Electrocardiol 43(6):719–724

    Google Scholar 

  23. Kim JS, Park JE, Seo JD, Lee WR, Kim HS, Noh JI, Kim NS, Yum MK (2000) Decreased entropy of symbolic heart rate dynamics during daily activity as a predictor of positive head-up tilt test in patients with alleged neurocardiogenic syncope. Phys Med Biol 45(11):3403

    Google Scholar 

  24. Koichubekov B, Riklefs V, Sorokina M, Korshukov I, Turgunova L, Laryushina Y, Bakirova R, Muldaeva G, Bekov E, Kultenova M (2017) Informative nature and nonlinearity of lagged poincaré plots indices in analysis of heart rate variability. Entropy 19(10):523

    Google Scholar 

  25. Krishnakumari A, Elayaperumal A, Saravanan M, Arvindan C (2017) Fault diagnostics of spur gear using decision tree and fuzzy classifier. Int J Adv Manuf Technol 89(9-12):3487–3494

    Google Scholar 

  26. Kurths J, Voss A, Saparin P, Witt A, Kleiner H, Wessel N (1995) Quantitative analysis of heart rate variability. Chaos: Interdiscip J Nonlinear Sci 5(1):88–94

    Google Scholar 

  27. Lei Y, Lin J, Zuo MJ, He Z (2014) Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48:292–305

    Google Scholar 

  28. Li C, de Oliveira JV, Cerrada M, Pacheco F, Cabrera D, Sanchez V, Zurita G (2016) Observer-biased bearing condition monitoring: From fault detection to multi-fault classification. Eng Appl Artif Intell 50:287–301

    Google Scholar 

  29. Li C, Sánchez RV, Zurita G, Cerrada M, Cabrera D (2016) Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 16(6):895

    Google Scholar 

  30. Li C, Sanchez RV, Zurita G, Cerrada M, Cabrera D, Vásquez RE (2015) Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168:119–127

    Google Scholar 

  31. Luts J, Ojeda F, Van de Plas R, De Moor B, Van Huffel S, Suykens JA (2010) A tutorial on support vector machine–based methods for classification problems in chemometrics. Anal Chim Acta 665(2):129–145

    Google Scholar 

  32. Medina R, Alvarez X, Jadán D, Macancela JC, Sánchez RV, Cerrada M (2017) Poincaré plot features from vibration signal for gearbox fault diagnosis. In: Proceedings of the ETCM 2017. Institute of Electrical and Electronics Engineers, IEEE, pp 1–6

  33. Medina R, Alvarez X, Jadán D., Macancela JC, Sánchez RV, Cerrada M (2018) Gearbox fault classification using dictionary sparse based representations of vibration signals. J Intell Fuzzy Syst 34:3605–3618

    Google Scholar 

  34. Mosallam A, Medjaher K, Zerhouni N (2013) Nonparametric time series modelling for industrial prognostics and health management. Int J Adv Manuf Technol 69(5-8):1685–1699

    Google Scholar 

  35. Motahar H, Samani FS, Molaie M (2016) Nonlinear vibration of the bevel gear with teeth profile modification. Nonlinear Dyn 83(4):1875–1884

    Google Scholar 

  36. Pacheco F, de Oliveira JV, Sánchez RV, Cerrada M, Cabrera D, Li C, Zurita G, Artés M (2016) A statistical comparison of neuroclassifiers and feature selection methods for gearbox fault diagnosis under realistic conditions. Neurocomputing 194:192–206

    Google Scholar 

  37. Patel UA, Naik BS (2017) Nonlinear vibration prediction of cylindrical roller bearing rotor system modeling for localized defect at inner race with finite element approach. Proc Instit Mech Eng, Part K: J Multi-body Dyn 231 (4):647–657

    Google Scholar 

  38. Patra P, Saran VH, Harsha S (2018) Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 232:1464419318762678

  39. de Paula AV, Endres LAM, Möller SV (2016) Symbolic dynamics applied to the identification of flow patterns inside tube banks. Nucl Sci Eng 184(3):334–345

    Google Scholar 

  40. Piskorski J, Guzik P (2007) Geometry of the poincaré plot of rr intervals and its asymmetry in healthy adults. Physiol Measur 28(3):287

    Google Scholar 

  41. Porta A, Baumert M, Cysarz D, Wessel N (2015) Enhancing dynamical signatures of complex systems through symbolic computation. Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 373(2034):1–16

    Google Scholar 

  42. Praveenkumar T, Saimurugan M, Krishnakumar P, Ramachandran K (2014) Fault diagnosis of automobile gearbox based on machine learning techniques. Procedia Eng 97:2092–2098

    Google Scholar 

  43. Rao C, Sarkar S, Ray A, Yasar M (2008) Comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. In: American control conference. IEEE, pp 3052–3057

  44. Rosso O, Martin M, Figliola A, Keller K, Plastino A (2006) Eeg analysis using wavelet-based information tools. J Neurosci Methods 153(2):163–182

    Google Scholar 

  45. Sánchez RV, Lucero P, Vásquez RE, Cerrada M, Macancela JC, Cabrera D (2018) Feature ranking for multi-fault diagnosis of rotating machinery by using random forest and knn. J Intell Fuzzy Syst 34(6):3463–3473

    Google Scholar 

  46. Sanjith BMM, Sujatha C, Jayakumar T (2012) Symbolic dynamics based bearing fault detection. In: 2012 IEEE 5th India international conference on Power electronics (IICPE). IEEE, pp 1–5

  47. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437

    Google Scholar 

  48. Soleimani A, Khadem S (2015) Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos, Solitons Fractals 78:61–75

    Google Scholar 

  49. Subbu A (2009) Pattern recognition using symbolic dynamic filtering. Ph.D. thesis, The Pennsylvania State University, Electrical Engineering, PA

  50. Subbu A, Srivastav A, Ray A, Keller E (2010) Symbolic dynamic filtering for image analysis: theory and experimental validation. Signal Image Video Process 4(3):319–329

    Google Scholar 

  51. Sun Y (2012) Fault detection in dynamic systems using the largest lyapunov exponent. Ph.D. thesis, Texas A & M University, USA

  52. Tang X, Tracy E, Boozer A, Brown R, et al. (1995) Symbol sequence statistics in noisy chaotic signal reconstruction. Phys Rev E 51(5):3871

    Google Scholar 

  53. Tucker W (2002) Computing accurate poincaré maps. Physica D: Nonlinear Phenom 171(3):127–137

    MATH  Google Scholar 

  54. Valencia JF, Vallverdu M, Rivero I, Voss A, de Luna AB, Porta A, Caminal P (2015) Symbolic dynamics to discriminate healthy and ischaemic dilated cardiomyopathy populations: an application to the variability of heart period and qt interval. Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 373(2034):1–20

    Google Scholar 

  55. Von Oertzen T, Boker SM (2010) Time delay embedding increases estimation precision of models of intraindividual variability. Psychometrika 75(1):158–175

    MathSciNet  MATH  Google Scholar 

  56. Wang Z, Xue X (2014) Multi-class Support Vector Machine. Springer International Publishing, Cham, pp 23–48

    Google Scholar 

  57. Worden K, Staszewski WJ, Hensman JJ (2011) Natural computing for mechanical systems research: a tutorial overview. Mech Syst Signal Process 25(1):4–111

    Google Scholar 

  58. Xu D, Beck C (2017) Symbolic dynamics techniques for complex systems: Application to share price dynamics. EPL (Europhys Lett) 118(3):30001

    Google Scholar 

  59. Yan R, Gao RX (2004) Complexity as a measure for machine health evaluation. IEEE Trans Instrum Measur 53(4):1327– 1334

    Google Scholar 

  60. Yin Z, Hou J (2016) Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing 174:643–650

    Google Scholar 

  61. Zhang W, Jia MP, Zhu L, Yan XA (2017) Comprehensive overview on computational intelligence techniques for machinery condition monitoring and fault diagnosis. Chin J Mech Eng 30(4):782–795

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Medina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, R., Macancela, JC., Lucero, P. et al. Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis. Int J Adv Manuf Technol 104, 2195–2214 (2019). https://doi.org/10.1007/s00170-019-03858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03858-0

Keywords

Navigation