Skip to main content
Log in

Accuracy of the pattern transfer from the metal mask to the workpiece surface during multiphase jet machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Multiphase jet machining (MJM) is a recently developed surface texturing method based on which a mixture of abrasives and water is accelerated by compressed air to remove material from substrates. Considering the high divergence of the jet, masks are needed for MJM to obtain the desired features and dimensions. To investigate the pattern transfer accuracy, masks were prepared from a 304 stainless steel sheet using laser machining. The fundamental parameters of MJM as well as the effects of the mask opening width and thickness on the processing of the structures were studied and experimentally optimized. The use of wax to fix the mask on the substrate is proposed to avoid the frosted area around the machining structures. Overall, the optimized process MJM parameters can be used to fabricate various surface textures with the desired accuracy and dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang XL, Adachi K, Otsuka K, Kato K (2006) Optimization of the surface texture for silicon carbide sliding in water. Appl Surf Sci 253(3):1282–1286

    Article  Google Scholar 

  2. Shi LP, Wang XY, Su X, Wei H, Wang XL (2015) Comparison of the performances of mechanical gas seals textured with micro-grooves and micro-dimples. J Tribol 138(2):88–90

    Google Scholar 

  3. Wang XY, Shi LP, Dai QW, Huang W, Wang XL (2018) Multi-objective optimization on dimple shapes for gas face seals. Tribol Int 123:216–223

    Article  Google Scholar 

  4. Etsion I (2005) State of the art in laser surface texturing. Trans ASME J Tribol 127(1):761–762

    Google Scholar 

  5. Coblas DG, Fatu A, Maoui A, Hajjam M (2015) Manufacturing textured surfaces: State of art and recent developments. Proc IME J J Eng Tribol 229(1):3–29

    Article  Google Scholar 

  6. Qian SQ, Zhu D, Qu NS, Li HS, Yan DS (2010) Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining. Int J Adv Manuf Technol 47(9-12):1121–1127

    Article  Google Scholar 

  7. Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191–196

    Article  Google Scholar 

  8. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tool Manu 46(3):313–332

    Article  Google Scholar 

  9. Zhang T, Liu ZQ, Xu CH (2013) Influence of size effect on burr formation in micro cutting. Int J Adv Manuf Technol 68(9-12):1911–1917

    Article  Google Scholar 

  10. Belloy E, Thurre S, Walckiers E, Sayah A, Gijs MAM (2000) The introduction of powder blasting for sensor and microsystem applications. Sensors Actuators A Phys 84(3):330–337

    Article  Google Scholar 

  11. Haghbin N, Spelt JK, Papini M (2015) Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water. Int J Mach Tool Manu 88:108–117

    Article  Google Scholar 

  12. Park DS, Cho MW, Lee H, Cho WS (2004) Micro-grooving of glass using micro-abrasive jet machining. J Mater Process Technol 146(2):234–240

    Article  Google Scholar 

  13. Haghbin N, Ahmadzadeh F, Papini M (2018) Masked micro-channel machining in aluminum alloy and borosilicate glass using abrasive water jet micro-machining. J Manuf Process 35:307–316

    Article  Google Scholar 

  14. Wang FC, Xu QW, Feng DC, Guo CW (2017) Experiment study on performance of abrasive slurry jet with or without high polymer in stainless steel machining. Int J Adv Manuf Technol 95(1):1–8

    Google Scholar 

  15. Tsai FC, Yan BH, Kuan CY, Huang FY (2008) A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel. Int J Mach Tool Manu 48(7):932–945

    Article  Google Scholar 

  16. Sobczak R, Prazmo J, Perec A, Chmielik I (2016) Dust free surface treatment parameters of the three-phase jet, generated in the sandbot device. MM Sci J 01:872–876

    Article  Google Scholar 

  17. Su X, Shi LP, Huang W, Wang XL (2016) A multi-phase micro-abrasive jet machining technique for the surface texturing of mechanical seals. Int J Adv Manuf Technol 86(5-8):1–8

    Article  Google Scholar 

  18. Shi LP, Fang Y, Dai QW, Huang W, Wang XL (2017) Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Mater Manuf Process 33(13):1415–1421

    Article  Google Scholar 

  19. Miller DS (2004) Micromachining with abrasive waterjets. J Mater Process Technol 149(1):37–42

    Article  Google Scholar 

  20. Papini M, Ciampini D, Krajac T, Spelt JK (2003) Computer modelling of interference effects in erosion testing: effect of plume shape. Wear 255(1):85–97

    Article  Google Scholar 

  21. Haghbin N, Ahmadzadeh F, Spelt JK, Papini M (2016) High pressure abrasive slurry jet micro-machining using slurry entrainment. Int J Adv Manuf Technol 84(5-8):1031–1043

    Google Scholar 

  22. Zhang L, Kuriyagawa T, Yasutomi U, Zhao J (2005) Investigation into micro abrasive intermittent jet machining. Int J Mach Tool Manu 45(7-8):873–879

    Article  Google Scholar 

  23. Wensink H, Jansen HV, Berenschot JW, Elwenspoek MC (2000) Mask materials for powder blasting. J Micromech Microeng 10(2):175–180

    Article  Google Scholar 

  24. Saragih AS, Ko TJ (2009) A thick SU-8 mask for microabrasive jet machining on glass. Int J Adv Manuf Technol 41(7-8):734–740

    Article  Google Scholar 

  25. Ghobeity A, Krajac T, Burzynski T, Papini M, Spelt JK (2008) Surface evolution models in abrasive jet micromachining. Wear 264(3):185–198

    Article  Google Scholar 

  26. Nouhi A, Lari MRS, Spelt JK, Papini M (2015) Implementation of a shadow mask for direct writing in abrasive jet micro-machining. J Mater Process Technol 223:232–239

    Article  Google Scholar 

  27. Ghobeity A, Papini M, Spelt JK (2009) An analytical model of the effect of particle size distribution on the surface profile evolution in abrasive jet micromachining. J Mater Process Technol 209(20):6067–6077

    Article  Google Scholar 

  28. Wensink H, Elwenspoek MC (2002) Reduction of sidewall inclination and blast lag of powder blasted channels. Sensors and Actuators a-Physical 102(1-2):157–164

    Article  Google Scholar 

  29. Matsumura T, Muramatsu T, Fueki S (2011) Abrasive water jet machining of glass with stagnation effect. CIRP Ann Manuf Technol 60(1):355–358

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Chen for his help in providing the instrument-aided measurement.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 51675268 and 51805252) and China Postdoctoral Science Foundation (No. 2019 M651822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Dai, Q., Huang, W. et al. Accuracy of the pattern transfer from the metal mask to the workpiece surface during multiphase jet machining. Int J Adv Manuf Technol 106, 1355–1364 (2020). https://doi.org/10.1007/s00170-019-04607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04607-z

Keywords

Navigation