Skip to main content
Log in

Method exploration of flux bands constricting arc welding for high-strength steel T-joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new energy-efficient welding method, flux bands constricting arc (FBCA) welding, is proposed to solve the fabrication of metal sandwich panels. This method is suitable for welding T-joints in special structures where the welding gun is unable to reach the welding position, such as welding thick face-plate metal sandwich panels. The characteristics of FBCA welding, key welding technologies, and corresponding defects and resolutions are discussed. Pull-out tests between T-joints welded by laser and FBCA welding were conducted. Results indicate that complete penetration and good fusion of three-sided T-joint can be produced by FBCA welding. The typical cross section morphology is unlike other common welding methods. T-joints without defects, such as weld asymmetry, root leakage, slag inclusion, and pores, show better ultimate tensile strength than T-joints welded by laser welding. The FBCA welding method can compensate for shortage of insufficient weld width of laser welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Säynäjäkangas J, Taulavuori T (2004) A review in design and manufacturing of stainless steel sandwich panels. Stainless Steel World 55:59

    Google Scholar 

  2. Kujala P, Klanac A (2005) Steel sandwich panels in marine applications. Brodogradnja 56(4):305–314

    Google Scholar 

  3. Crupi V, Epasto G, Guglielmino E (2011) Low-velocity impact strength of sandwich materials. J Sandw Struct Mater 13(4):409–426

    Article  Google Scholar 

  4. Wadley HN, Fleck NA, Evans AG (2003) Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol 63(16):2331–2343

    Article  Google Scholar 

  5. Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. Proc R Soc Lond A Math Phys Eng Sci 2121:2495–2516

    Article  Google Scholar 

  6. Kozak J (2007) Forecasting of fatigue life of laser welded joints. Zagadnienia Eksploatacji Maszyn 149(1):85–94

    Google Scholar 

  7. Frank D, Romanoff J, Remes H (2013) Fatigue strength assessment of laser stake-welded web-core steel sandwich panels. Fatigue Fract Eng Mater Struct 36(8):724–737

    Article  Google Scholar 

  8. Romanoff J, Varsta P (2007) Bending response of web-core sandwich plates. Compos Struct 81(2):292–302

    Article  Google Scholar 

  9. Kolsters H, Zenkert D (2006) Buckling of laser-welded sandwich panels. Part 1: elastic buckling parallel to the webs. Proc Inst Mech Eng M J Eng Marit Environ 220(2):67–79

    Google Scholar 

  10. Kolsters H, Zenkert D (2006) Buckling of laser-welded sandwich panels. Part 2: elastic buckling normal to the webs. Proc Inst Mech Eng M J Eng Marit Environ 220(2):81–94

    Google Scholar 

  11. Kolsters H, Zenkert D (2010) Buckling of laser-welded sandwich panels: ultimate strength and experiments. Proc Inst Mech Eng M J Eng Marit Environ 224(1):29–45

    Google Scholar 

  12. Jelovica J, Romanoff J, Ehlers S, Varsta P (2012) Influence of weld stiffness on buckling strength of laser-welded web-core sandwich plates. J Constr Steel Res 77:12–18

    Article  Google Scholar 

  13. Jelovica J, Romanoff J, Ehlers S, Aromaa J (2013) Ultimate strength of corroded web-core sandwich beams. Mar Struct 31:1–14

    Article  Google Scholar 

  14. Romanoff J, Remes H, Socha G, Jutila M, Varsta P (2007) The stiffness of laser stake welded T-joints in web-core sandwich structures. Thin-Walled Struct 45(4):453–462

    Article  Google Scholar 

  15. Jiang XX, Li JM, Cao R, Zhu L, Chen JH, Wu YX, Li ZG (2014) Microstructures and properties of sandwich plane laser-welded joint of hull steel. Mater Sci Eng A 595:43–53

    Article  Google Scholar 

  16. Cai X, Fan C, Lin S, Yang C, Hu L, Ji X (2017) Effects of shielding gas composition on arc behaviors and weld formation in narrow gap tandem GMAW. Int J Adv Manuf Technol 91(9–12):3449–3456

    Article  Google Scholar 

  17. Zhang J, Xu W, Wang Y, Wang Y, Zhang X, Liao Y (2003) Effect of welding heat input on HAZ character in ultra-fine grain steel welding. China Weld 12(2):122–127

    Google Scholar 

  18. Meng Y, Li G, Gao M, Zhang C, Zeng X (2019) Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding. Int J Adv Manuf Technol 100(9–12):2299–2309

    Article  Google Scholar 

  19. Gong M, Kawahito Y, Li G, Gao M, Zeng X (2017) Stabilization effect of space constraint in narrow gap laser-arc hybrid welding analyzed by approximate entropy. Int J Adv Manuf Technol 92(9–12):3093–3102

    Article  Google Scholar 

  20. Zhang G, Shi Y, Zhu M, Fan D (2017) Arc characteristics and metal transfer behavior in narrow gap gas metal arc welding process. J Mater Process Technol 245:15–23

    Article  Google Scholar 

  21. Kang Y, Na S (2003) Characteristics of welding and arc signal in narrow groove gas metal arc welding using electromagnetic arc oscillation. Weld J 82(5):93/S–99/S

    Google Scholar 

  22. Xu W, Lin S, Fan C, Yang C (2015) Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol 79(1–4):183–196

    Article  Google Scholar 

  23. Guo N, Lin S, Zhang L, Yang C (2009) Metal transfer characteristics of rotating arc narrow gap horizontal GMAW. Sci Technol Weld Join 14(8):760–764

    Article  Google Scholar 

  24. Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52(1):110–114

    Article  Google Scholar 

  25. Zhu L, Zheng S-X, Chen J-H (2006) Development of ultra-narrow gap welding with constrained arc by flux band. China Weld 15(2):44–49

    Google Scholar 

  26. Zheng S, Zhu L, Huang B, Chen J (2009) Constricted arc by flux strips applied to ultra-narrow gap welding. J Mech Eng 45(2):219–223

    Article  Google Scholar 

  27. Siltanen J, Tihinen S, Kömi J (2015) Laser and laser gas-metal-arc hybrid welding of 960 MPa direct-quenched structural steel in a butt joint configuration. J Laser Appl 27(S2):S29007

    Article  Google Scholar 

  28. Kashaev N, Ventzke V, Fomichev V, Fomin F, Riekehr S (2016) Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt Lasers Eng 86:172–180

    Article  Google Scholar 

  29. Frank D, Remes H, Romanoff J (2011) Fatigue assessment of laser stake-welded T-joints. Int J Fatigue 33(2):102–114

    Article  Google Scholar 

  30. Kou S, Sun D (1985) Fluid flow and weld penetration in stationary arc welds. Metall Trans A 16(1):203–213

    Article  Google Scholar 

  31. Rokhlin S, Guu A (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72(8):381

    Google Scholar 

Download references

Funding

The authors received financial support for this research from the National Natural Science Foundation of China (Grant No. 51665033), Innovation and Enterprise Foundation of Gansu Provincial Sci. & Tech. Department (Grant No. 17CX2JA026), and Elite Student Study Abroad Foundation of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisen Qiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Qiao, J., Chen, Z. et al. Method exploration of flux bands constricting arc welding for high-strength steel T-joints. Int J Adv Manuf Technol 105, 2447–2460 (2019). https://doi.org/10.1007/s00170-019-04471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04471-x

Keywords

Navigation